Skip to main content
Log in

Raman Spectroscopic Study of the Conformation and Melting of Poly(dG) · Poly(dC) and Poly(dG-dC) · Poly(dG-dC) in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopic measurements on aqueous solutions of poly(dG) · poly(dC)indicate that the conformation of the polynucleotides in this double helicalcomplex are distributed between the A and B types at room temperature, the Aform being predominant at −15°C and decreasing progressively upon raising thetemperature to 65°C. A reversible pretransition has been found in this complexnear 70°C. Modifications in the spectra at this temperature indicate no majorconformational changes, but rather suggest altered base pairing and hydration ofthe carbonyl groups, accompanied by a slight distortion of the double helix,resulting in a slightly reduced stacking of the cytosine bases. Measurements inself-pressurized solutions of the complex at high temperature show that it meltsat 103°C in 0.1M NaCl solution (107°C in 0.5M NaCl). These values are somewhatlower than those we have determined in the same manner for the complexpoly(dG-dC) · poly(dG-dC): 117°C in 0.1M MgCl2 and 113°C or higher in 0.1MNaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984).

    Google Scholar 

  2. P. Mercier, V. Carrier, S. Roy, and R. Savoie, Biopolymers 49, 21 (1999).

    Google Scholar 

  3. J. M. Benevides, A. H. J. Wang, A. Rich, Y. Kyogoku, G. A. van der Marel, J. H. van Boom, and G. J. Thomas, Jr., Biochemistry 25, 41 (1986).

    Google Scholar 

  4. F. M. Pohl and T. M. Jovin, J. Mol. Biol. 67, 375 (1972).

    Google Scholar 

  5. D. E. Irish, T. Jarv, and C. I. Ratcliffe, Appl. Spectrosc. 36, 137 (1982).

    Google Scholar 

  6. J. T. Bulmer, D. E. Irish, and L. Odberg, Can. J. Chem. 53, 3806 (1975).

    Google Scholar 

  7. R. Savoie, M. Pézolet, S. Dallaire, and C. Simard, Can. J. Appl. Spectrosc. 39, 164 (1994).

    Google Scholar 

  8. R. Savoie and M. Pigeon-Gosselin, Can. J. Spectrosc. 28, 133 (1983).

    Google Scholar 

  9. D. G. Cameron, J. K. Kauppinen, D. J. Moffatt, and H. H. Mantsch, Appl. Spectrosc. 36, 245 (1982).

    Google Scholar 

  10. S. C. Erfurth and W. L. Peticolas, Biopolymers 14, 247 (1975).

    Google Scholar 

  11. C. H. Chou and G. J. Thomas, Jr., Biopolymers 16, 765 (1977).

    Google Scholar 

  12. T. O'Connor and W. M. Scovell, Biopolymers 20, 2351 (1981).

    Google Scholar 

  13. E. W. Small and W. L. Peticolas, Biopolymers 10, 69, (1971).

    Google Scholar 

  14. S. C. Erfurth, E. J. Kiser, and W. L. Peticolas, Proc. Natl. Acad. Sci. USA 69, 938 (1972).

    Google Scholar 

  15. Y. Nishimura, M. Tsuboi, T. Nakano, S. Higuchi, T. Sato, T. Shida, S. Uesigi, E. Ohtsuka, and M. Ikehara, Nucleic Acids Res. 11, 1579 (1983).

    Google Scholar 

  16. J. M. Benevides and G. J. Thomas, Jr., Nucleic Acids Res. 11, 5747 (1983).

    Google Scholar 

  17. B. Prescott, W. Steinmetz, and G. J. Thomas, Jr., Biopolymers 23, 235 (1984).

    Google Scholar 

  18. Y. Nishimura, C. Torigoe, and M. Tsuboi, Biopolymers 24, 1841 (1985).

    Google Scholar 

  19. S. Arnott and E. Selsing, J. Mol. Biol. 88, 551 (1974).

    Google Scholar 

  20. G. A. Thomas and W. L. Peticolas, J. Amer. Chem. Soc. 105, 993 (1983).

    Google Scholar 

  21. T. E. Cheatham, J. Srinivasa, D. A. Case, and P. A. Kollman, J. Biomol. Structure Dynamics 16, 265 (1998).

    Google Scholar 

  22. E. W. Small and W. L. Peticolas, Biopolymers 10, 1377 (1971).

    Google Scholar 

  23. J. Marmur and P. Doty, J. Mol. Biol. 5, 109 (1962).

    Google Scholar 

  24. A. Dugaiczyk, D. L. Robberson, and A. Ullrich, Biochemistry 19, 5869 (1980).

    Google Scholar 

  25. A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. van Boom, G. van der Marel, and A. Rich, Nature (London) 282, 680 (1979)

    Google Scholar 

  26. M. Behe and G. Felsenfeld, Proc. Natl. Acad. Sci. USA 78, 1619 (1981).

    Google Scholar 

  27. J. H. van de Sande and T. M. Jovin, EMBO J. 1, 115 (1985).

    Google Scholar 

  28. H. H. Klump, E. Schmid, and M. Wosgien, Nucleic Acid Res. 21, 2343 (1993).

    Google Scholar 

  29. M. J. Behe, G. Felsenfeld, S. C. Szu, and E. Charney, Biopolymers 24, 289 (1985).

    Google Scholar 

  30. T. J. Thamann, R. C. Lord, A. H. J. Wang, and A. Rich, Nucleic Acids Res. 9, 5443 (1981).

    Google Scholar 

  31. Y. Z. Chen and E.W. Prohofsky, Biopolymers 33, 797 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrier, V., Savoie, R. Raman Spectroscopic Study of the Conformation and Melting of Poly(dG) · Poly(dC) and Poly(dG-dC) · Poly(dG-dC) in Aqueous Solution. Journal of Solution Chemistry 29, 1027–1038 (2000). https://doi.org/10.1023/A:1005147019985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005147019985

Navigation