Skip to main content
Log in

FIP Effect in the Solar Upper Atmosphere: Spectroscopic Results

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Recent spectroscopic measurements from instruments on the Solar and Heliospheric Observatory (SOHO) find that the coronal composition above a polar coronal hole is nearly photospheric. However, similar SOHO observations show that in coronal plasmas above quiet equatorial regions low-FIP elements are enhanced by a factor of ≈ 4. In addition, the process of elemental settling in coronal plasmas high above the solar surface was shown to exist. Measurements by the Ulysses spacecraft, which are based on non-spectroscopic particle counting techniques, show that, with the exception of He, the elemental composition of the fast speed solar wind is similar to within a factor of 1.5 to the composition of the photosphere. In contrast, similar measurements in the slow speed wind show that elements with low first ionization potential (FIP < 10 eV) are enhanced, relative to the photosphere, by a factor of 4-5. By combining the SOHO and Ulysses results, ideas related to the origin of the slow speed solar wind are presented. Using spectroscopic measurements by the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) instrument on SOHO the photospheric abundance of He was determined as 8.5 ± 1.3% (Y = 0.248).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders, E., and Grevesse, N.: 1989, ‘Abundances of Elements: Meteoritic and Solar', Geochim. Cosmochim. Acta. 53, 19.

    Article  Google Scholar 

  • Athay, R.G.: 1976, The Solar Chromosphere and Corona: Quiet Sun, Reidel, Boston.

    Google Scholar 

  • Bohlin, J.D., and Sheeley Jr. N.R.: 1978, ‘Extreme Ultraviolet Observations of Coronal Holes', Solar Phys. 56, 12.

    Article  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llegaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., and Eyles, C.J.: 1995, ‘The Large Angle Spectroscopic Coronagraph (LASCO), Solar Phys. 162, 357.

    Article  ADS  Google Scholar 

  • Doschek, G.A., Feldman, U., VanHoosier, M.E., and Bartoe, J.-D. F.: 1976, ‘The Emission Line Spectrum Above the Limb of the Quiet Sun: 1100–1940 Å', ApJ Supp. 31, 417.

    Article  ADS  Google Scholar 

  • Feldman, U.: 1983, ‘On the Unresolved Fine Structures of the Solar Atmosphere in the 3 × 104–2 × 105 K Temperature Region', ApJ 275, 426.

    Article  Google Scholar 

  • Feldman, U.: 1987, ‘On the Fine Structure of the Solar Atmosphere. II The Temperature Region 2 × 105K–5 × 105 K', ApJ 320, 426.

    Article  ADS  Google Scholar 

  • Feldman, U.: 1992, ‘Elemental Abundances in the Upper Solar Atmosphere', Physica Scripta 46, 202.

    ADS  Google Scholar 

  • Feldman, U.: 1993, ‘Is it Justified to Assume that Everywhere in the Sun's Photosphere-Corona Domain the Electric Conductivity is High? Or What Drives the Solar Upper Atmosphere?', ApJ 411, 896.

    Article  ADS  Google Scholar 

  • Feldman, U., and Laming, J.M.: 1994, ‘On the Absence of Relationship Between the Properties of the T ≥ 1 × 106 K and the Properties of the T ≤ 1 × 106 K Solar Plasmas', ApJ 434, 370.

    Article  ADS  Google Scholar 

  • Feldman, U., Schüle, U., Widing, K.G., and Laming J.M.: 1998, ‘The Coronal Composition Above the Solar Equator and Pole as Determined From Spectra Acquired by the SUMER Instrument on SOHO', to be published in ApJ 506.

  • Feldman, U., and Widing, K.G.: 1990, ‘Photospheric Abundances of Oxygen, Neon and Argon Derived from the XUV Spectrum of an Impulsive Flare', ApJ 363, 292.

    Article  ADS  Google Scholar 

  • Feldman, U., Widing, K.G., and Lund P.A.: 1990, ‘On the Anomalous Abundance of the 2 × 104–2 × 105 K Solar Atmosphere Above a Sun Spot', ApJL 364, L21.

    Article  ADS  Google Scholar 

  • Fludra, A., and Schmelz, J.T.: 1995, ‘Absolute Abundances of Flaring Coronal Plasma Derived from SMM Spectral Observations', ApJ 447, 936.

    Article  ADS  Google Scholar 

  • Gabriel, A.H., Culhane, J.L., Patchett, B.E., Breeveld, E.R., Lang, J., Parkinson, J.H., Payne, J., and Norman, K.: 1995, ‘Spacelab2 Measurement of the Solar Coronal Helium Abundance', Adv. Space Res. 15(No. 7), p. 63.

    Article  ADS  Google Scholar 

  • Geiss, J.: 1998, ‘Solar Wind Abundance Measurements Constraints of the FIP Mechanism', in this volume.

  • Geiss, J., and Bürgi, A.: 1986, ‘Diffusion and Thermal Diffusion in Partially Ionized Gases in the Atmospheres of the Sun and Planets', Astron. Astrophys. 159, 1.

    MATH  ADS  Google Scholar 

  • Huber, M.C.E., Foukal, P.V., Noyes, R.W., Reeves, E.M., Schmahl, E.J., Timothy, J.G., Vernazza, J.E., and Withbroe, G.L.: 1974, ‘Extreme-Ultraviolet Observations of Coronal Holes: Initial Results from Skylab', ApJ Letters 194, L115

    Article  ADS  Google Scholar 

  • Kjeldseth Moe, O., and Nickolas, K.R.; 1977, ‘Emission Measures, Electron Densities, and Non-Thermal Velocities From Optically Thin UV lines Near a Quiet Solar Limb', ApJ 211, 579.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Sylwester, J. and Bentley, R.D.: 1986, ‘Determination of the Calcium Elemental Abundance of 43 Flares from SMM-XRP Solar X-ray Spectra', Adv. Space Res. 6, 245.

    Article  ADS  Google Scholar 

  • Meyer, J.P.: 1985, ‘Solar-Stellar Outer Atmospheres and Energetic Particles, and Galactic Cosmic Rays', ApJ Suppl. 57, 173.

    Article  ADS  Google Scholar 

  • Meyer, J.P.: 1993, ‘Element Fractionation at Work in the Solar Atmosphere', in The Origin and Evolution of the Elements, N. Prantzos, E. Vangioni-Flan and M. Cassé (eds.), Cambridge University Press.

  • Meyer, J.P.: 1996, ‘Abundance Anomalies in the Solar Outer Atmosphere', Annual Astrophysics Conference in Maryland on Cosmic Abundances, College Park, October 9–11, 1995, S.S. Holt and Sonneborn (eds.), ASP Conf. Series, Astron. Soc. of the Pacific 99, p. 127.

  • Raymond, J.C. et al.: 1997, ‘Composition of Coronal Streamers From the Ultraviolet Coronograph Spectrometer', Solar Phys. 175, 645

    Article  ADS  Google Scholar 

  • Sheeley, Jr., N.R.: 1995, ‘A Volcanic Origin for High-FIP Material in the Solar Atmosphere', ApJ 440, 884.

    Article  ADS  Google Scholar 

  • von Steiger, R., Geiss, J., and Gloeckler, G.: 1997, ‘Composition of the Solar Wind', in Cosmic Winds and the Heliosphere, J.R. Jokipii, C.P. Sonett and M.S. Giampapa (eds.), Tucson: University of Arizona Press, p. 581.

    Google Scholar 

  • Sterling, A.C., Doschek, G.A., and Feldman, U.: 1993 ‘On the Absolute Abundance of Calcium in Solar Flares', ApJ 404, 394.

    Article  ADS  Google Scholar 

  • Veck, N.J., and Parkinson, J.H.: 1981, ‘Solar Abundances from X-Ray Flare Observations', MNRAS 197, 41.

    ADS  Google Scholar 

  • Widing, K.G.: 1997, ‘Emerging Active Regions on the Sun and Photospheric Abundance of Neon', ApJ 480, 400.

    Article  ADS  Google Scholar 

  • Widing, K.G., and Feldman, U.: 1992, ‘Element Abundance and Plasma Properties in a Coronal Polar Plume', ApJ 392, 715.

    Article  ADS  Google Scholar 

  • Widing, K.G., and Feldman, U.: 1993, ‘Nonphotospheric Abundances in a Solar Active Region', ApJ 416, 392.

    Article  ADS  Google Scholar 

  • Widing, K.G., Feldman, U., and Bhatia, A.K.: 1986, ‘The Extreme Ultraviolet Spectrum 300–630 Å of an Erupting Prominence Observed from Skylab', ApJ 308, 982.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J.-C., Grewing, M., Huber, M.C.E., Jordan, S.D., Poland, A.I., Thomas, R.J., Kühne, M., Timothy, J.G., Hassler, D.M., and Siegmund, O.H.W.,: 1995, ‘SUMER-Solar Ultraviolet Measurements of Emitted Radiation', Solar Phys. 162, 189.

    Article  ADS  Google Scholar 

  • Young, P.R., Mason, H.E., Keenan, F.P., and Widing K.G.: 1997, ‘The Ar/Ca Relative Abundance in Solar Coronal Plasma', Astron. Astrophys. 323, 243.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, U. FIP Effect in the Solar Upper Atmosphere: Spectroscopic Results. Space Science Reviews 85, 227–240 (1998). https://doi.org/10.1023/A:1005146332450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005146332450

Navigation