Advertisement

Solar Physics

, Volume 184, Issue 1, pp 213–218 | Cite as

Longterm Prediction of Solar Activity Using the Combined Method

  • Arnold Hanslmeier
  • Klaus Denkmayr
  • Peter Weiss
Article

Abstract

The Combined Method is a non-parametric regression technique for long-term prediction of smoothed monthly sunspot numbers. Starting from a solar minimum, a prediction of the succeeding maximum is obtained by using a dynamo-based relation between the geomagnetic aa index and succeeding solar maxima. Then a series of predictions is calculated by computing the weighted average of past cycles of similar level. This technique leads to a good prediction performance, particularly in the ascending phase of the solar cycle where purely statistical methods tend to be inaccurate. For cycle 23 the combined method predicts a maximum of 160 (in terms of smoothed sunspot number) early in the year 2000.

Keywords

Weighted Average Solar Activity Solar Cycle Good Prediction Prediction Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cugnon, P.: 1997, in G. Heckman et al. (eds.), Proceedings of the 5th Solar-Terrestrial Predictions Workshop, Communications Research Laboratory, Japan, p. 65.Google Scholar
  2. Denkmayr, K.: 1993, 'On Long-Term Predictions of Solar Activity', diploma thesis, Linz.Google Scholar
  3. Denkmayr, K. and Cugnon, P.: 1997, in G. Heckman et al. (eds.), Proceedings of the 5th Solar-Terrestrial Predictions Workshop, Communications Research Laboratory, Japan, p. 103.Google Scholar
  4. Gonzalez, G. and Schatten, K. H.: 1987, Solar Phys. 114, 189.Google Scholar
  5. Haigh, J. D.: 1996, Science, 272, 981.Google Scholar
  6. Kappenman, J. G.: 1993, in Hruška, J., Shea, M. A., Smart, D. F., and Heckman, G. (eds.), Solarterrestrial Predictions, IV, Ottawa, Vol. 2, p. 131.Google Scholar
  7. Koeckelenbergh, A.: 1986, in P. A. Simon, G. Heckman, and M. A. Shea (eds), Solar-Terrestrial Predictions, US Department of Commerce, NOAA,ERL, Boulder, p. 111.Google Scholar
  8. Layden, A. C., Fox, P. A., Howard, J. M., Sarajedini, A., Schatten, K. H., Sofia, S.: 1991, Solar Phys. 132, 1.Google Scholar
  9. Mayaud, P. N.: 1980, Derivation, Meaning and Use of Geomagnetic Indices, AGU, Washington, 1980.Google Scholar
  10. Mugellesi, R. and Kerridge, D. J.: 1991, ESA J. 15, 132.Google Scholar
  11. Ohl, A. I.: 1977, Soln. Dannye No. 12, 87.Google Scholar
  12. Schatten, K. H. and Pesnell, W. D.: 1993, Geophys. Res. Lett. 20, 2275.Google Scholar
  13. Schatten, K. H. and Hoyt, D.: 1998, Geophys. Res. Lett. 25, 599.Google Scholar
  14. Thompson, R.: 1997, in G. Heckman et al. (eds.), Proceedings of the 5th Solar-Terrestrial Predictions Workshop, Communications Research Laboratory, Japan, p. 65.Google Scholar
  15. Waldmeier, M.: 1968, Astron. Mitt. Eidg. Sternw. Zürich 286, 1.Google Scholar
  16. Wilson, R. M.: 1990, Solar Phys. 125, 143.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Arnold Hanslmeier
    • 1
  • Klaus Denkmayr
    • 2
  • Peter Weiss
    • 2
  1. 1.Institut für AstronomieUniv.-Platz 5GrazAustria
  2. 2.Institut für ASWUniversity of LinzLinz-AuhofAustria

Personalised recommendations