Skip to main content
Log in

FT-Raman Study of Ionic Interactions in Lithium and Silver Tetrafluoroborate Solutions in Acrylonitrile

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solutions of silver and lithium tetrafluoroborate in acrylonitrile, over a range ofconcentrations between 0.5 and 4 mol-kg−1, have been studied byFourier-transform Raman spectroscopy. The spectral regions studied include the solventν(C=dN) fundamental and the anion B-F symmetric stretching band. In AgBF4solutions the absence of ionic pairing was demonstrated and the anion ν1(A 1)remains as a single narrow band located at 764.7±0.1 cm−1. Consequently, thesilver ion solvation number does not change in the range of concentrations studied,having a constant value of 3.54±0.10. However, a high level of ionic pairingwas observed in the corresponding solutions of LiBF4. Three components weredetected in the tetrafluoroborate ν1(A 1) band located at 766.0±0.4, 773.4±1.1,and 782.7±0.9 cm−1, and assigned to spectroscopically free anions, ion pairs,and dimers, respectively. The solvation number of the lithium ion, which shouldbe three in the limit of infinite dilution, decreases as the salt concentrationincreases as a result of the ionic pairing. However, the ionic pairing of LiBF4 inacrylonitrile is less than that previously observed in lithiumtrifluoromethanesulfonate (triflate) or lithium perchlorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Barthel and H. J. Gores, in Chemistry of Nonaqueous Solutions. Current Progress, G. Mamantov and A. I. Popov, eds. (VCH Publ. New York, 1994), p. 1.

    Google Scholar 

  2. F. M. Gray, Polymer Electrolytes (The Royal Society of Chemistry, Cambridge, 1997).

    Google Scholar 

  3. P. G. Hall, G. R. Davies, I. M. Ward, and J. E. McIntyre, Polymer Commun. 27, 100 (1986).

    Google Scholar 

  4. P. K. Muhuri and D. K. Hazra, J. Chem. Soc. Faraday Trans. 87, 3511 (1991).

    Google Scholar 

  5. B. Das and D. K. Hazra, J. Phys. Chem. 99, 269 (1995).

    Google Scholar 

  6. P. K. Muhuri, B. Das, and D. K. Hazra, J. Phys. Chem. B 101, 3329 (1997).

    Google Scholar 

  7. G. Zundel and J. Fritsch, in The Chemical Physics of Solvation. Part B. Spectroscopy of Solvation, R. R. Dogonadze, E. Kálmán, A. A. Kornyshev, and J. Ulstrup, eds. (Elsevier, Amsterdam, 1986), p. 21.

    Google Scholar 

  8. I. S. Perelygin, in Ionic Solvation, G. A. Krestov et al. eds. (Ellis Horwood, Chichester, 1994), p. 100.

    Google Scholar 

  9. J. B. Gill, in Chemistry of Nonaqueous Solutions. Current Progress, 1st edn., G. Mamantov and A. I. Popov, eds. (VCH Publ. New York, 1994), p. 149.

    Google Scholar 

  10. R. Frech and J. P. Manning, Electrochim. Acta 37, 1499 (1992).

    Google Scholar 

  11. J. B. Gill, Pure Appl. Chem. 53, 1365 (1981).

    Google Scholar 

  12. B. L. Papke, M. A. Ratner, and D. F. Shriver, J. Electrochem. Soc. 129, 1434 (1982).

    Google Scholar 

  13. Y. Marcus, Ion Properties (Wiley, Chichester, 1998).

    Google Scholar 

  14. O. Kristiansson, J. Lindgren, and J. D. Villepin, J. Phys. Chem. 92, 2680 (1988).

    Google Scholar 

  15. K. Miyaji and K. Morinaga, Bull. Chem. Soc. Jpn. 59, 1695 (1986).

    Google Scholar 

  16. A. Bernson and J. Lindgren, Polymer 35, 4848 (1994).

    Google Scholar 

  17. P. Gans, J. B. Gill, and P. J. Longdon, J. Chem. Soc. Faraday Trans. 1 85, 1835 (1989).

    Google Scholar 

  18. J. M. Alía, H. G. M. Edwards, and J. Moore, J. Raman Spectrosc. 26, 715 (1995).

    Google Scholar 

  19. J. M. Alía, Y. Díaz de Mera, H. G. M. Edwards, F. J. García, and E. E. Lawson, Z. Phys. Chem. (Munich) 196, 209 (1996).

    Google Scholar 

  20. J. M. Alía, H. G. M. Edwards, Y. Díaz de Mera, and E. E. Lawson, J. Solution Chem. 28, 69 (1997).

    Google Scholar 

  21. J. M. Alía, H. G. M. Edwards, and J. Moore, Spectrochim. Acta A 51, 2039 (1995).

    Google Scholar 

  22. Z. Deng and D. E. Irish, Can. J. Chem. 69, 1766 (1991).

    Google Scholar 

  23. Z. Deng and D. E. Irish, J. Chem. Soc. Faraday Trans. 88, 2891 (1992).

    Google Scholar 

  24. J. Sadlej, Spectrochim. Acta A 35, 681 (1979).

    Google Scholar 

  25. J. M. Alía, H. G. M. Edwards, and J. Moore, J. Chem. Soc. Faraday Trans. 92, 1187 (1996).

    Google Scholar 

  26. D. Battisti, G. A. Nazri, B. Klassen, and R. Aroca, J. Phys. Chem. 97, 5826 (1993).

    Google Scholar 

  27. M. Chabanel, D. Le Goff, and K. Touaj, J. Chem. Soc. Faraday Trans. 92, 4199 (1996).

    Google Scholar 

  28. D. W. James and R. E. Mayes, J. Phys. Chem. 88, 637 (1984).

    Google Scholar 

  29. H. Akashi, S. L. Hsu, W. J. MacKnight, M. Watanabe, and N. Ogata, J. Electrochem. Soc. 142, L205–L207 (1995).

    Google Scholar 

  30. S.-A. Hyodo and K. Okabayashi, Electrochim. Acta 34, 1551 (1989).

    Google Scholar 

  31. J. M. Alía, Y. Díaz de Mera, H. G. M. Edwards, F. J. García, and E. E. Lawson, J., Mol. Struct. 408/409, 439 (1997).

    Google Scholar 

  32. D. Fàrcasiu and D. Hâ ncu, J. Chem. Soc. Faraday Trans. 93, 2161 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alia, J.M., Edwards, H.G.M. FT-Raman Study of Ionic Interactions in Lithium and Silver Tetrafluoroborate Solutions in Acrylonitrile. Journal of Solution Chemistry 29, 781–797 (2000). https://doi.org/10.1023/A:1005144113352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005144113352

Navigation