Skip to main content
Log in

Complete Resolution and Thermodynamic Parameters of the Ionization Equilibria of Pyridoxal in Water—Dioxane Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A potentiometric method has been used to determine the thermodynamicequilibrium constants for the macroscopic ionization processes of pyridoxal inwater—1,4-dioxane mixtures (0–70% weight fraction dioxane)at temperatures ranging from 10 to 50°C. These data, combined with the equilibrium constants for the tautomericand hemiacetalization processes, allow complete resolution of the microconstantsystem and calculation of the microscopic ionization equilibrium constants underall our experimental conditions. The standard thermodynamic function changesfor the macroscopic and microscopic ionization processes were obtained in variouswater—1,4-dioxane mixtures at 25°C. The values of any given microscopic pKfor the different solvents and temperatures fit very well to a single equation. Thefree energy, enthalpy, and entropy obtained for the different ionization processesin water—dioxane mixtures correlate with Kamlet and Taft's solvatochromicparameters π* and α, which are a measure of the dipolarity/polarizability andhydrogen-bonding capacity of the solvent, respectively. These correlations explainmore fully the mutual compensation between the contributions of enthalpy andentropy and the origin of the solvent effect on the pK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Christen and D. E. Metzler, Transaminases (Wiley, New York, 1985).

    Google Scholar 

  2. E. E. Snell, in Vitamin B6 Pyridoxal Phosphate: Chemical, Biochemical and Medical Aspects, D. Dolphin, R. Poulson, and O. Abramovic, eds., Part A (Wiley, New York, 1986).

    Google Scholar 

  3. M. Cortijo, J. Llor, and J. M. Sánchez-Ruiz, J. Biol. Chem. 263, 17960 (1988).

    Google Scholar 

  4. J. Llor and S. B. Asensio, J. Solution Chem. 25, 667 (1996).

    Google Scholar 

  5. J. M. Sanchez-Ruiz, J. Llor, and M. Cortijo, J. Chem. Soc. Perkin Trans. II, 2047 (1984).

  6. E. A. Peterson and H. A. Sober, J. Amer. Chem. Soc. 76, 169 (1954).

    Google Scholar 

  7. L. G. van Uitert and C. E. Haas, J. Amer. Chem. Soc. 75, 451 (1953).

    Google Scholar 

  8. L. G. van Uitert and W. C. Fernelius, J. Amer. Chem. Soc. 76, 5887 (1954).

    Google Scholar 

  9. J. Llor, M. Sánchez-Nevado, S. Asensio, and M. Cortijo, An. Quim. 83, 317 (1987).

    Google Scholar 

  10. E. M. Woolley, D. G. Hurkot, and L. H. Hepler, J. Phys. Chem. 74, 3908 (1970).

    Google Scholar 

  11. C. C. Panichajakul and E. M. Woolley, Anal. Chem. 47, 1870 (1975).

    Google Scholar 

  12. C. C. Panichajakul and E. M. Woolley, Advan. Chem. Ser. 155, 263 (1976).

    Google Scholar 

  13. J. Llor, J. M. Sanchez-Ruiz, and M. Cortijo, Acta Cient. Comp. 22, 231 (1985).

    Google Scholar 

  14. S. B. Asensio, E. Lopez-Cantarero, and J. Llor, Can. J. Chem. 70, 1635 (1992).

    Google Scholar 

  15. C. M. Harris, R. J. Johnson, and D. E. Metzler, Biochim. Biophys. Acta 421, 181 (1976).

    Google Scholar 

  16. J. M. Sanchez-Ruiz, M. Cortijo, and J. Llor, An. Quim. 82, 165 (1986).

    Google Scholar 

  17. W. Korytnyk and R. P. Singh, J. Amer. Chem. Soc. 85, 2813 (1963).

    Google Scholar 

  18. I. D. Lapper, H. H. Mantsch, and I. C. P. Smith, Can. J. Chem. 53, 2406 (1975).

    Google Scholar 

  19. C. M. Harris, R. J. Johnson, and D. E. Metzler, Biochim. Biophys. Acta 421, 181 (1976).

    Google Scholar 

  20. J. Llor, J. M. Sanchez-Ruiz, and M. Cortijo, J. Chem. Soc. Perkin Trans. II 951 (1988).

  21. D. E. Metzler, C. M. Harris, R. J. Johnson, C. B. Siano, and J. A. Thomson, Biochemistry 12, 5377 (1973).

    Google Scholar 

  22. D. D. Perrin, B. Dempsey, and E. P. Sarjeant, pKa prediction for Organic Acid and Bases (Chapman and Hall, London 1981).

    Google Scholar 

  23. W. L. Marshall and A. S. Quist, Proc. Natl. Acad. Sci. USA 58, 901 (1967).

    Google Scholar 

  24. A. S. Quist and W. L. Marshall, J. Phys. Chem. 72, 1536 (1968).

    Google Scholar 

  25. W. L. Marshall, J. Phys. Chem. 74, 346 (1970).

    Google Scholar 

  26. E. C. W. Clarke and D. N. Glew, Trans. Faraday Soc. 62, 539 (1966).

    Google Scholar 

  27. G. H. Parsons and C. H. Rochester, J. Chem. Soc. Faraday Trans. I. 71, 1069 (1975).

    Google Scholar 

  28. R. G. Cox and W. E. Waghorne, Chem. Soc. Rev. 9, 381 (1980).

    Google Scholar 

  29. J. Llor, M. P. Ros, and S. B. Asensio, J. Solution Chem. 26, 1021 (1997).

    Google Scholar 

  30. J. Datta and K. K. Kundu, Can. J. Chem. 59, 3149 (1981).

    Google Scholar 

  31. N. S. Isaacs Physical Organic Chemistry (Longmans, Harlow, UK, 1992).

    Google Scholar 

  32. C. Reichardt, Chem. Rev. 94, 2319 (1994).

    Google Scholar 

  33. M. J. Kamlet and R. W. Taft, J. Amer. Chem. Soc. 98, 377 (1976).

    Google Scholar 

  34. M. J. Kamlet and R. W. Taft, J. Amer. Chem. Soc. 98, 2886 (1976).

    Google Scholar 

  35. M. J. Kamlet, J. L. M. Abboud, and R. W. Taft, J. Amer. Chem. Soc. 99, 6027 (1977).

    Google Scholar 

  36. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, and R. W. Taft, J. Org. Chem. 48, 2877 (1983).

    Google Scholar 

  37. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn. (VCH, Weinheim, 1988).

    Google Scholar 

  38. E. Casassas, G. Fonrodona, and A. de Juan, J. Solution Chem. 21, 147 (1992).

    Google Scholar 

  39. E. Casassas, G. Fonrodona, and A. de Juan, Inorg. Chim. Acta. 187, 187 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llor, J., Ros, M.P. & Asensio, S.B. Complete Resolution and Thermodynamic Parameters of the Ionization Equilibria of Pyridoxal in Water—Dioxane Mixtures. Journal of Solution Chemistry 29, 1123–1141 (2000). https://doi.org/10.1023/A:1005143217105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005143217105

Navigation