Skip to main content
Log in

Aqueous Solution Chemistry of Scandium(III) Studied by Raman Spectroscopy and ab initio Molecular Orbital Calculations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aqueous solutions of Sc(ClO4)3,ScCl3, and Sc2(SO4)3 were studied by Ramanspectroscopy over a wide concentration range. In aqueous perchlorate solutionSc(III) occurs as an hexaaqua cation. The weak, polarized Raman band assignedto the ν1(a 1g) ScO6 mode of the hexaaqua-Sc (III) ion has been studied as afunction of concentration and temperature. The ν1(a 1g) ScO6 mode at 442 cm−1of the hexaaqua—Sc(III) shifts only 3 cm−1 to lower frequency and broadensabout 20 cm−1 for a 60°C temperature increase. The Raman spectroscopic datasuggest that the hexaaqua-Sc (III) ion is stable in perchlorate solution within theconcentration and temperature range measured. Besides the polarized componentat 442 cm−1, two weak depolarized modes at 295 and 410 cm−1 were measuredin the Raman effect. These two modes of the ScO6 unit were assigned to ν3(f 2g)and ν2(e γ), respectively. The infrared active mode ν3(f 1u) was measured at 460cm−1. The frequency data confirm the centrosymmetry of the Sc(III) aquacomplex, contrary to earlier Raman results. The powder spectrum of crystallineSc(ClO4) 3 · 6H2O shows the above described Raman modes as well. Thesefindings are in contrast to Sc2(SO4)3 solutions, where sulfate replaces water inthe first hydration sphere and forms thermodynamically strong sulfato complexes.In ScCl3 solutions thermodynamically weak chloro complexes could be detected.Ab initio molecular orbital calculations were performed at the HF and MP2 levelsof theory using different basis sets up to 6–31 + G(d). Gas-phase structures,binding energies, and enthalpies are reported for the Sc3+(OH2)6 and Sc3+(OH2)7cluster. The Sc—O bond length for the Sc3+(OH2)6 cluster reproduces theexperimentally determined bond length of 2.18 Å (recent EXAFS data) almost exactly.The theoretical binding energy for the hexaaqua Sc(III) ion was calculated andaccounts for ca. 54–59% of the experimental hydration enthalpy of Sc(III). Thethermodynamic stability of the Sc3+(OH2)6(OH2) cluster was compared to thatof the Sc3+(OH2)7 cluster, demonstrating that hexacoordination is inherently morestable than heptacoordination in the scandium (III) system. The calculated ν1ScO6frequency of the Sc+(OH2)6 cluster is ca. 12% lower than the experimentalfrequency. Adding an explicit second hydration sphere to give Sc3+ (OH2)18,denoted Sc[6 + 12], is shown to correct for the discrepancy. The frequencycalculation and the thermodynamic parameters for the Sc[6 + 12] cluster aregiven and the importance of the second hydration sphere is stressed. Calculatedfrequencies of the ScO6 subunit in the Sc[6 + 12] cluster agree very well withthe experimental values (for example, the calculated ν1ScO6 frequency was foundto be 447 cm−1, in excellent agreement with the above-reported experimentalvalue). The binding enthalpy for the Sc[6 + 12]cluster predicts the single ionhydration enthalpy to about 89%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Burgess, Metal Ions in Solution (Horwood, Chichester, 1978), pp. 137-159.

    Google Scholar 

  2. Y. Marcus, Chem. Rev. 88, 1475 (1988).

    Google Scholar 

  3. (a) H. Kanno, T. Yamaguchi, and H. Ohtaki, J. Phys. Chem. 93, 1695 (1989); (b) H. Kanno and Y. Yoshimura, J. Alloys Comp. 225, 253 (1995).

  4. Y. Yamaguchi, M. Niihara, T. Takamuku, H. Wakita, and H. Kanno, Chem. Phys. Lett. 274, 485 (1997).

    Google Scholar 

  5. Gmelins Handbuch der anorganischen Chemie, Scandium (System Nr. 39), Part A2, (Weinheim/ Bergstrasse, Verlag Chemie, 1973), p.47 and references therein.

  6. J. Valkonen, Ann. Acad. Sci. Fenn., Ser. A2 188, 36 (1979).

    Google Scholar 

  7. A. Fratiello, R. E. Lee, and R. E Schuster, Inorg. Chem. 9, 391 (1970).

    Google Scholar 

  8. W. W. Rudolph, M.H. Brooker, and C. C. Pye, J. Phys. Chem. 99, 3793 (1995).

    Google Scholar 

  9. (a) M. Moskovits, Proce. 5th Intern. Conf. Raman Spectroscopy, Freiburg, Germany, 2-8 September 1976, p. 768; (b) K. M. Michaellian and M. Moskovits, Nature (London) 273, 135 (1978).

  10. C. P. Nash, T. C. Donnelly, and P.A. Rock, J. Solution Chem. 6, 663 (1977).

    Google Scholar 

  11. J. T. Bulmer, D. E. Irish, and L. Oedberg, Can. J. Chem. 53, 3806 (1975).

    Google Scholar 

  12. D. E. Irish and T. Jarv, J. Chem. Soc. Faraday Discuss., p. 64 (1978).

  13. F. Rull, Ch. Balarev, J. L. Alvarez, F. Sobron, and A. Rodriguez, J. Raman Spectrosc. 25, 933 (1994).

    Google Scholar 

  14. (a) G. E. Walrafen, J. Chem. Phys. 36, 1035 (1962); (b) J. Chem. Phys. 44, 1546 (1966).

  15. (a) W. W. Rudolph, Z. Phys. Chem. 194, 73 (1996); (b) W. W. Rudolph, M. H. Brooker, and P. R. Tremaine, Z. Phys. Chem. 209, 181 (1999).

  16. E. Högfeldt, Stability Constants of Metal-Ion Complexes, Part A (Pergamon Press, Oxford, 1982), 204 pp.

    Google Scholar 

  17. C. C. Pye, W. W. Rudolph, and R. A. Poirier, J. Phys. Chem. 100, 601 (1996).

    Google Scholar 

  18. (a) W. W. Rudolph and C. C. Pye, J. Phys. Chem. B 102, 3564 (1998); (b) W. W. Rudolph and C. C Pye, PCCP 1, 4583 (1999); (c) C. C. Pye and W. W. Rudolph, J. Phys. Chem. A 102, 9933 (1998).

  19. A. I. Vogel, A Text-Book of Quantitative Inorganic Analysis, 3rd Edn. (Longmans, London, 1961), p. 415.

    Google Scholar 

  20. W. E. Harris and B. Kratochvil, An Introduction to Chemical Analysis (Saunders College Publ., Philadelphia, Pennsylvania, 1981), pp. 75, 203.

    Google Scholar 

  21. P. L. Brown, J. Ellis, and R. N. Sylva, J. Chem. Soc. Dalton Trans., p. 35 (1983).

  22. D. L. Cole, L. D. Rich, J. D. Owen, and E. M. Eyring, Inorg. Chem. 8, 682 (1969).

    Google Scholar 

  23. (a) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1969); (b) W. J. Pietro and W. J. Hehre, J. Comp. Chem. 4, 241 (1983).

  24. J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Amer Chem. Soc. 102, 939 (1980); K. D. Dobbs and W. J. Hehre, J. Comp. Chem. 8, 880 (1987).

    Google Scholar 

  25. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972); P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta (Berlin) 28, 213 (1973).

    Google Scholar 

  26. S. Huzinaga, Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 1985).

    Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, et al., Gaussian 92/DFT, Revision F.4 (Gaussian, Inc. Pittsburgh, Pennsylvania, 1993).

    Google Scholar 

  28. W. W. Rudolph and C. C. Pye, Z. Phys. Chem. 209, 243 (1999).

    Google Scholar 

  29. D. M. Adams, Metal-Ligand Vibrations and Related Vibrations (E. Arnold, London, 1967).

    Google Scholar 

  30. Gmelins Handbuch der anorganischen Chemie, Seltenerdelemente, Teil C5, Sc, Y, La, und Lanthanide, System Nr. 39 (Verlag Chemie, Weinheim/Bergstrasse, 1977), p. 235 and references therein.

  31. (a) W. W. Rudolph, Diploma Thesis (Mining Academy Freiberg, Department of Inorganic and Inorganic-Technical Chemistry, Freiberg/Saxony, 1979); (b) W. W. Rudolph and S. Schönher, Z. Phys. Chem. 270, 1121 (1989); (c) W. W. Rudolph and S. Schönherr, Z. Phys. Chem. 172, 31 (1991); (d)W.W. Rudolph and S. Schönherr, Z. Phys. Chem. 173, 167 (1991).

  32. W. W. Rudolph and S. Schönherr, Proc. Chem. Soc. GDR Halle/Saale, 2-4 December, 1986), p. 83.

  33. A. D. Paul, J. Phys. Chem. 66, 1248 (1962).

    Google Scholar 

  34. G. L. Reed, K. J. Sutton, and D. F. C. Morris, J. Inorg. Nucl. Chem. 26, 1227 (1964).

    Google Scholar 

  35. A. P. Samodelov, Radiokhimia 6, 568 (1964).

    Google Scholar 

  36. K. A. Kraus, F. Nelson, and G. W. Smith, J. Phys. Chem. 58, 11 (1954).

    Google Scholar 

  37. F šmirous, J. Celeda, and M. Palek, Collect. Czech. Chem. Commun. 36, 3891 (1971).

    Google Scholar 

  38. (a) W. W. Rudolph and G. Irmer, J. Solution Chem. 23, 663 (1994); (b) W. W. Rudolph, M. H. Brooker, and P. R. Tremaine, J. Solution Chem. 26, 757 (1997); (c) W. W. Rudolph, Ber. Bunsenges. Phys. Chem. 102, 183 (1998); (d) W. W. Rudolph, J. Chem. Soc. Faraday Trans. 92, 489 (1998).

  39. S. Diaz-Moreno, A. Muñnoz-Páez, J. M. Martinez, R. R. Pappalardo, and E. S. Marcos, J. Amer. Chem. Soc. 118, 12654 (1996).

    Google Scholar 

  40. D. N. Fiat and R. E. Connick, J. Amer. Chem. Soc. 90, 608 (1968).

    Google Scholar 

  41. (a) S. Petrucci, in Ionic Interactions. S. Petrucci, ed., Vol. 2 (Academic Press, New York, 1971), p. 43; (b) A. Bonsen, W. Knoche, W. Berger, K. Giese, and S. Petrucci, Ber. Bunsenges. Phys. Chem. 82, 678 (1978).

    Google Scholar 

  42. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edn. (Wiley, New York, 1988), p. 973.

    Google Scholar 

  43. H. B. Silber and T. Mioduski, Inorg. Chem. 23, 1577 (1984).

    Google Scholar 

  44. C. T. Horovitz, Scandium: Its Occurrence, Chemistry, Physics, Metallurgy, Biology and Technology (Academic Press, London, New York, 1975), Chap. 6.

    Google Scholar 

  45. Gmelins Handbuch der Anorganischen Chemie, 8. Auflage, Seltenerdelemente, Teil A2 Scandium (System Nr. 39) Geschichtliches. Vorkommen (Verlag Chemie, Weinheim/Bergstrasse, 1973), Chap. 3, Geochemistry, pp. 1, & 47.

  46. (a) R Åkesson, L. G. Pettersson, M. Sandström, and U. Wahlgren, J. Amer. Chem. Soc. 116, 8691 (1994); (b) R. Åkesson et al., J. Amer. Chem. Soc. 116, 8704 (1994).

  47. E. D. Glendening and D. Feller, J.Phys. Chem. 100, 4790 (1996).

    Google Scholar 

  48. W. W. Rudolph and C. C. Pye, J.Phys. Chem., submitted (1999).

  49. F. P. Rotzinger, J. Amer. Chem. Soc. 119, 5230 (1997).

    Google Scholar 

  50. W. W. Rudolph and C. C. Pye, unpublished (Memorial University of Newfoundland, Department of Chemistry, 1995); C. C. Pye, Ph.D. thesis, Memorial University of Newfoundland, Department of Chemistry, 1997.

  51. P. Lindqvist-Reis, A. Munñoz-Paez, S. Diaz-Moreno, S. Pattanaik, I. Persson, and M. Sandströn, Inorg. Chem. 37, 6675 (1998).

    Google Scholar 

  52. M. Pavlov, P.E.M. Siegbahn, and M. Sandström, J. Phys. Chem. A, 102, 219 (1998).

    Google Scholar 

  53. (a) D.W. Smith, J. Chem. Educat. 54, 540 (1977); (b) J. Burgess, Ions in Solution (Horwood Publishers, Chichester, 1988), Chap. 4, Table 4.7; (c) D. T. Richens, The Chemistry of Aqua Ions (Wiley, Chichester, 1997), Appendix.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, W.W., Pye, C.C. Aqueous Solution Chemistry of Scandium(III) Studied by Raman Spectroscopy and ab initio Molecular Orbital Calculations. Journal of Solution Chemistry 29, 955–986 (2000). https://doi.org/10.1023/A:1005138818168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005138818168

Navigation