Skip to main content
Log in

Structures of Concentrated Sulfuric Acid Determined from Density, Conductivity, Viscosity, and Raman Spectroscopic Data

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Addition of water to stoichiometric 100% sulfuric acid increases the density untila maximum results near 87 mole% H2SO4. The density and conductivity maximaand viscosity minimum, the latter two near 75 mole%, are direct macroscopicresponses to microscopic quantum mechanical properties of H3O+ and of nearlysymmetric H-bond double-well potentials, as follows: (1) lack of H bonding tothe O atom of H3O+; (2) short, 2.4–2.6 A, O—O distances of nearly symmetricH bonds; and, (3) increased mobility of protons in such short H bonds, give riseto the density maximum via (1) and (2); (1) produces the viscosity minimum;and the conductivity maximum results from (2) and (3). A pronounced minimumnear 1030 cm−1 in the symmetric SO3 stretching Raman frequency of HSO4 ,observed near 45 mole% also results from double-well effects involving the shortH bonds of direct hydronium ion—bisulfate ion pair interactions. Estimates of theconcentrations of the (H3O+)(HSO4 ) and (H2SO4)(HSO4 ) pair interactions weredetermined from Raman intensity data and are given for compositions between42–100 mole%

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. F. Young, Rec. Chem. Progr. 12, 81 (1951).

    Google Scholar 

  2. T. F. Young, L. F. Maranville, and H. M. Smith, in The Structure of Electrolytic Solutions, W. J. Hamer, ed. (Wiley, New York, 1959).

    Google Scholar 

  3. I. M. Klotz and C. F. Eckert, J. Amer. Chem. Soc. 64, 1878 (1942).

    Google Scholar 

  4. T. F. Young, C. R. Singleterry, and I. M. Klotz, J. Phys. Chem. 82, 671 (1978).

    Google Scholar 

  5. B. S. W. Dawson, D. E. Irish, and G. E. Toogood, J. Phys. Chem. 90, 334 (1986).

    Google Scholar 

  6. E. R. Malinowski, R. A. Cox, and U. L. Haldna, Anal. Chem. 56, 778 (1984).

    Google Scholar 

  7. K. Tomikawa and H. Kanno, J. Phys. Chem. A 102, 6082 (1998).

    Google Scholar 

  8. T. F. Young and G. E. Walrafen, Trans. Faraday Soc. 57, 34 (1960).

    Google Scholar 

  9. W. F. Giauque, E. W. Hornung, J. E. Kunzler, and T. R. Rubin, J. Amer. Chem. Soc. 82, 62 (1960).

    Google Scholar 

  10. J. N. Brönsted, Z. Phys. Chem. 68, 693 (1910).

    Google Scholar 

  11. G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances (McGraw-Hill, New York, 1923), Table 7, p. 95.

    Google Scholar 

  12. P. A. Giguère, J. Chem. Educat. 56, 571 (1979).

    Google Scholar 

  13. M. D. Newton and S. Ehrenson, J. Amer. Chem. Soc. 93, 4971 (1971).

    Google Scholar 

  14. G. E. Walrafen, J. Chem. Phys. 40, 2326 (1964).

    Google Scholar 

  15. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, J. Chem. Phys. 85, 6970 (1986).

    Google Scholar 

  16. G. E. Walrafen, W.-H. Yang, Y. C. Chu, and M. S. Hokmabadi, J. Phys. Chem. 100, 1381 (1996).

    Google Scholar 

  17. C. Weast, ed., in Handbook of Chemistry and Physics, 67th edn. (CRC, Boca Raton, FL., 1986-87).

    Google Scholar 

  18. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, (Longman, London, 1986), p. 222.

    Google Scholar 

  19. R. Börnstein and W. A. Roth, eds., Physikalisch-Chemische Tabellen, (Springer Verlag, Berlin, 1912).

    Google Scholar 

  20. O. T. Fasullo, Sulfuric Acid Use and Handling (McGraw-Hill, New York, 1965).

    Google Scholar 

  21. L. P. Hammett and A. J. Deyrup, J. Amer. Chem. Soc. 55, 1900 (1933).

    Google Scholar 

  22. G. E. Walrafen and R. T. W. Douglas, Ph.D. Thesis, Howard University, 1980.

  23. R. Pascard, C. R. Acad. Sci. 240, 2162 (1955).

    Google Scholar 

  24. R. Triolo and A. Narten, J. Chem. Phys. 63, 3624 (1975).

    Google Scholar 

  25. G. E. Walrafen and Y. C. Chu, J. Phys. Chem. 96, 9127 (1992).

    Google Scholar 

  26. G. E. Walrafen, M. Abebe. F. A. Mauer, S. Block, G. J. Piermarini, and R. G. Munro, J. Chem. Phys. 77, 2166 (1982).

    Google Scholar 

  27. J. C. Speakman, in MTP International Review of Science, Physical Chemistry Series One, J. M. Robertson, ed., Vol. II (Butterworths, Baltimore, Maryland, 1972), pp. 1-31.

    Google Scholar 

  28. F. H. Rhodes and C. B. Barbour, Ind. Eng. Chem. 15, 850 (1923).

    Google Scholar 

  29. A. Das, S. Dev, H. Shangpliang, K. L. Nonglait, and I. Ismail, J. Phys. Chem. 101, 4166 (1997).

    Google Scholar 

  30. M. Catti, G. Ferraris, and G. Ivaldi, Acta Crystallogr. B35, 525 (1979).

    Google Scholar 

  31. G. Ferraris and G. Ivaldi, Acta Crystallogr. B40, 1 (1984).

    Google Scholar 

  32. H. E. Darling, J. Chem. Eng. Data 9, 421 (1964).

    Google Scholar 

  33. M. Eigen, in The Structure of Electrolytic Solutions, W. J. Hamer, ed. (Wiley, New York, 1959).

    Google Scholar 

  34. G. E. Walrafen, unpublished Raman measurements conducted at Bell Telephone Laboratories, Murray Hill, New Jersey, 1961.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walrafen, G.E., Yang, WH., Chu, Y.C. et al. Structures of Concentrated Sulfuric Acid Determined from Density, Conductivity, Viscosity, and Raman Spectroscopic Data. Journal of Solution Chemistry 29, 905–936 (2000). https://doi.org/10.1023/A:1005134717259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005134717259

Navigation