Skip to main content
Log in

Representation of Multicomponent Liquid-Liquid Equilibria for Aqueous and Organic Solutions Using a Modified UNIQUAC Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A modified form of the UNIQUAC model is presented to accurately reproducebinary phase equilibria and ternary and quaternary liquid-liquid equilibria ofaqueous and organic solutions. The model gives a good representation in thereproduction of binary coexistence curves over a wide temperature range usingtemperature-dependent parameters and of binary vapor-liquid equilibria usingtwo binary energy parameters, and in the correlation of ternary and quaternaryliquid-liquid equilibria using ternary and quaternary parameters, in addition tobinary parameters. The quaternary calculated results are compared with thoseobtained from the modified Wilson and extended UNIQUAC models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. P. Novák, J. Matouš and J. Pick, Liquid–Liquid Equilibria (Elsevier, Amsterdam, 1987).

    Google Scholar 

  2. J. M. Prausnitz, T. F. Anderson, E. A. Grens, C. A. Eckert, R. Hsieh, and J. P. O'Connell, Computer Calculations for Multicomponent Vapor–Liquid and Liquid–Liquid Equilibria (Prentice-Hall, Englewood Cliffs, New Jersey, 1980).

    Google Scholar 

  3. I. Nagata, Thermochim. Acta 56, 43 (1982).

    Google Scholar 

  4. I. Nagata and T. Watanabe, Fluid Phase Equilibria 72, 1 (1992).

    Google Scholar 

  5. I. Nagata and T. Watanabe, Thermochim. Acta 208, 43 (1992).

    Google Scholar 

  6. I. Nagata, K. Tamura, and T. Yamada, J. Solution Chem. 25, 567 (1996).

    Google Scholar 

  7. I. Nagata, Fluid Phase Equilibria 51, 53 (1989).

    Google Scholar 

  8. I. Nagata, Fluid Phase Equilibria 54, 191 (1990).

    Google Scholar 

  9. J. Gmehling, J. Li, and M. Schiller, Ind. Eng. Chem. Res. 32, 178 (1993).

    Google Scholar 

  10. G. Maurer and J. M. Prausnitz, Fluid Phase Equilibria 2, 91 (1978).

    Google Scholar 

  11. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).

    Google Scholar 

  12. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

    Google Scholar 

  13. I. Nagata, T. Meyer, and J. Gmehling, Fluid Phase Equilibria 65, 19 (1991).

    Google Scholar 

  14. D. C. Jones, J. Chem. Soc. 132, 799 (1929).

    Google Scholar 

  15. A. N. Campbell, E. M. Kartzmark, and W. E. Falconer, Can. J. Chem. 36, 1475 (1958).

    Google Scholar 

  16. E. N. Pennington and S. J. Marrvil, Ind. Eng. Chem. 45, 1371 (1953).

    Google Scholar 

  17. E. L. Eckfeldt and W. W. Lucasse, J. Phys. Chem. 47, 164 (1943).

    Google Scholar 

  18. M. Rogalski and R. Stryjek, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 28, 139 (1980).

    Google Scholar 

  19. S. C. P. Hwa, R. Techo, and W. T. Ziegler, J. Chem. Eng. Data 8, 409 (1963).

    Google Scholar 

  20. J. Timmermans, Z. Phys. Chem. 58, 129 (1907).

    Google Scholar 

  21. K. Ochi, M. Tada, and K. Kojima, Fluid Phase Equilibria 56, 341 (1990).

    Google Scholar 

  22. H. L. Cox and L. H. Cretcher, J. Amer. Chem. Soc. 48, 451 (1926).

    Google Scholar 

  23. R. R. Parvatiker and B. C. McEwen, J. Chem. Soc. 125, 1484 (1924).

    Google Scholar 

  24. J. M. Sørensen and W. Arlt, Liquid–Liquid Equilibrium Data Collection, Binary Sysytems, Vol. V, Part 1, DECHEMA Chem. Data Ser. (DECHEMA, Frankfurt, 1979).

    Google Scholar 

  25. O. Flaschner, J. Chem. Soc. 95, 668 (1909).

    Google Scholar 

  26. H. L. Cox, W. L. Nelson, and L. H. Cretcher, J. Amer. Chem. Soc. 49, 1080 (1927).

    Google Scholar 

  27. R. W. Hobson, R. J. Hartman and E. W. Kanning, J. Amer. Chem. Soc. 63, 2094 (1941).

    Google Scholar 

  28. R. R. Davison and W. H. Smith, J. Chem. Eng. Data 14, 296 (1969).

    Google Scholar 

  29. I. Nagata and K. Miyamoto, Thermochim. Acta 205, 307 (1992).

    Google Scholar 

  30. C. F. Spencer and R. P. Danner, J. Chem. Eng. Data 17, 236 (1972).

    Google Scholar 

  31. J. G. Hayden and J. P. O'Connell, Ind. Eng. Chem. Process Design Develop. 14, 209 (1975).

    Google Scholar 

  32. G. Werner and H. Schuberth, J. Prakt. Chem. 31, 225 (1966).

    Google Scholar 

  33. D. A. Palmer and B. D. Smith, J. Chem. Eng. Data 17, 71 (1972).

    Google Scholar 

  34. I. Nagata, Thermochim. Acta 112, 187 (1987).

    Google Scholar 

  35. I. Nagata and T. Ohta, J. Chem. Eng. Data 28, 256 (1983).

    Google Scholar 

  36. I. Nagata, Thermochim. Acta 114, 227 (1987).

    Google Scholar 

  37. H. Sugi and T. Katayama, J. Chem. Eng. Jpn. 11, 167 (1978).

    Google Scholar 

  38. I. Nagata and K. Katoh, Thermochim. Acta 39, 45 (1980).

    Google Scholar 

  39. R. V. Orye and J. M. Prausnitz, Trans. Faraday Soc. 61, 1338 (1965).

    Google Scholar 

  40. I. Brown and F. Smith, Aust. J. Chem. 13, 30 (1960).

    Google Scholar 

  41. C. R. Fordyce and D. R. Simonsen, Ind. Eng. Chem. 41, 104 (1949).

    Google Scholar 

  42. D. F. Othmer, M. M. Chudgar, and S. L. Levy, Ind. Eng. Chem. 44, 1872 (1952).

    Google Scholar 

  43. A. N. Marinichev and M. P. Susarev, Zh. Prikl. Khim. Leningrad 38, 378 (1965).

    Google Scholar 

  44. W. G. Beare, G. A. McVicar, and J. B. Ferguson, J. Phys. Chem. 34, 1310 (1930).

    Google Scholar 

  45. M. Antosik and S. I. Sandler, J. Chem. Eng. Data 39, 584 (1994).

    Google Scholar 

  46. A. Arce, M. Blanco, R. Riveiro, and I. Vidal, Can. J. Chem. Eng. 74, 419 (1996).

    Google Scholar 

  47. P. J. Maher and B. D. Smith, J. Chem. Eng. Data 25, 61 (1980).

    Google Scholar 

  48. A. Tasić, B. Djordjević, D. Grozdanić, N. Afgan, and D. Malić, Chem. Eng. Sci. 33, 189 (1978).

    Google Scholar 

  49. G. Scatchard, S. E. Wood, and J. M. Mochel, J. Phys. Chem. 43, 119 (1939).

    Google Scholar 

  50. I. M. Elshayal and B. C.-Y. Lu, J. Appl. Chem. 18, 277 (1968).

    Google Scholar 

  51. V. V. Udovenko and T. F. Mazanko, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 15, 1654 (1972).

    Google Scholar 

  52. J. Gmehling, U. Onken, and U. Weidlich, Vapor-Liquid Equilibrium Data Collection, Organic Hydroxy Compounds: Alcohols and Phenols (Supplement 2), Vol. I, Part 2d, DECHEMA Chem. Data Ser. (DECHEMA, Frankfurt, 1982).

    Google Scholar 

  53. J. Gmehling, U. Onken, and W. Arlt, Vapor–Liquid Equilibrium Data Collection, Organic Hydroxy Compounds: Alcohols and Phenols, Vol. I, Part 2b, DECHEMA Chem. Data Ser. (DECHEMA, Frankfurt, 1978).

    Google Scholar 

  54. C. Berro and A. Péneloux, J. Chem. Eng. Data 29, 206 (1984).

    Google Scholar 

  55. C. Berro, M. Rogalski, and A. Péneloux, J. Chem. Eng. Data 27, 352 (1982).

    Google Scholar 

  56. M. Hirata and Y. Hirose, Kagaku Kogaku 30, 121 (1966).

    Google Scholar 

  57. L. S. Kudryavtseva and M. P. Susarev, Zh. Prikl. Khim. Leningrad 36, 1231 (1963).

    Google Scholar 

  58. B. V. S. Rao and C. V. Rao, Chem. Eng. Sci. 17, 574 (1962).

    Google Scholar 

  59. G. Scatchard and C. L. Raymond, J. Amer. Chem. Soc. 60, 1278 (1938).

    Google Scholar 

  60. T. Ohta, T. Kinoshita, and I. Nagata, J. Chem. Eng. Data 28, 36 (1983).

    Google Scholar 

  61. M. L. Martin and J. C. Youings, Aust. J. Chem. 33, 2133 (1980).

    Google Scholar 

  62. S.-C. Hwang and R. L. Robinson, Jr., J. Chem. Eng. Data 22, 319 (1977).

    Google Scholar 

  63. I. Nagata, T. Ohta and Y. Uchiyama, J. Chem. Eng. Data 18, 54 (1973).

    Google Scholar 

  64. Z. Kh. Anisimova, E. G. Konakbaeva, and M. I. Shakhparonov, Teplofiz. Svojstva Veshcestv. Materi. 7, 167 (1973).

    Google Scholar 

  65. O. Muthu, P. J. Maher, and B. D. Smith, J. Chem. Eng. Data 25, 163 (1980).

    Google Scholar 

  66. A. Arce, J. Martinez-Ageitos, and A. Soto, J. Chem. Eng. Data 41, 718 (1996).

    Google Scholar 

  67. T. Ohta, J. Koyabu, and I. Nagata, Fluid Phase Equilibria 7, 65 (1981).

    Google Scholar 

  68. L. Gay, Chim. Ind. 18, 187 (1927).

    Google Scholar 

  69. G. Scatchard and F. G. Satkiewicz, J. Amer. Chem. Soc. 86, 130 (1964).

    Google Scholar 

  70. H. C. Van Ness and M. M. Abbott, Int. Data Ser. Ser. A 1, 2 (1977).

    Google Scholar 

  71. C. B. Kretschmer, J. Nowakowska, and R. Wiebe, J. Amer. Chem. Soc. 70, 1785 (1948).

    Google Scholar 

  72. C. B. Kretschmer and R. Wiebe, J. Amer. Chem. Soc. 71, 1793 (1949).

    Google Scholar 

  73. D. J. Hall, C. J. Mash and R. C. Penberton, NPL Rept. Chem. 95, 1 (1979).

    Google Scholar 

  74. I. Mertl, Collect. Czech. Chem. Commun. 37, 366 (1972).

    Google Scholar 

  75. I. Nagata, T. Yamada, and S. Nakagawa, J. Chem. Eng. Data 20, 271 (1975).

    Google Scholar 

  76. J. Surovy and J. Heinrich, Sb. Pr. Chem. Fak. SVST, p. 201 (1966).

  77. C. Berro, E. Neau, and M. Rogalski, Fluid Phase Equilibria 7, 41 (1981).

    Google Scholar 

  78. G. Scatchard, S. E. Wood and J. M. Mochel, J. Amer. Chem. Soc. 68, 1957 (1946).

    Google Scholar 

  79. I. Nagata, Fluid Phase Equilibria 18, 83 (1984).

    Google Scholar 

  80. S. E. Kharin, V. M. Perelygin, and V. S. Smirnov, Izv. Vyssh. Uchebn Zaved. Khim. Technol. 12, 1695 (1969).

    Google Scholar 

  81. H. Higashiuchi, Y. Sakuragi, Y. Iwai, Y. Arai, and M. Nagatani, Fluid Phase Equilibria 36, 35 (1987).

    Google Scholar 

  82. G. C. Schmidt, Z. Phys. Chem. 121, 221 (1926).

    Google Scholar 

  83. D. C. Freshwater and K. A. Pike, J. Chem. Eng. Data 12, 179 (1967).

    Google Scholar 

  84. I. Nagata, J. Chem. Thermodyn. 20, 467 (1988).

    Google Scholar 

  85. Z. S. Kooner, R. C. Phutela, and D. V. Fenby, Aust. J. Chem. 33, 9 (1980).

    Google Scholar 

  86. G. A. Ratcliff and K. C. Chao, Can. J. Chem. Eng. 47, 148 (1969).

    Google Scholar 

  87. D. P. DiElsi, R. B. Patel, M. M. Abbott, and H. C. Van Ness, J. Chem. Eng. Data 23, 242 (1978).

    Google Scholar 

  88. I. Nagata, T. Ohta, T. Takahashi, and K. Gotoh, J. Chem. Eng. Jpn. 6, 129 (1973).

    Google Scholar 

  89. R. K. Toghiani, H. Toghiani and G. Venkateswarlu, Fluid Phase Equilibria 122, 157 (1996).

    Google Scholar 

  90. H. S. Wu, K. A. Pividal, and S. I. Sandler, J. Chem. Eng. Data 36, 418 (1991).

    Google Scholar 

  91. J. Plura, J. Matous, J. P. Novák, and J. Sóbr, Collect. Czech. Chem. Commun. 44, 3627 (1979).

    Google Scholar 

  92. N. Gütekin, J. Chem. Eng. Data 34, 168 (1989).

    Google Scholar 

  93. I. Nagata, Thermochim. Acta 119, 357 (1987).

    Google Scholar 

  94. P. Oracz, Int. Data Series, Sel. Data Mixtures Ser. A 2, 87 (1986).

    Google Scholar 

  95. J. Sipowska and S. Wieczorek, J. Chem. Thermodyn. 12, 459 (1980).

    Google Scholar 

  96. M. S. Vrevskii, J. Russ. Phys. Chem. Soc. 42, 1 (1910).

    Google Scholar 

  97. H. C. Van Ness, and M. M. Abbott, Int. Data Ser. Ser. A 1, 13 (1977).

    Google Scholar 

  98. N. P. Markuzin and L. M. Pavlova, Zh. Prikl. Khim. Leningrad 44, 1090 (1971).

    Google Scholar 

  99. A. K. Deshpande and B. C.-Y. Lu, Indian J. Technol. 1, 403 (1963).

    Google Scholar 

  100. M. S. Lazeeva and N. P. Markuzin, Zh. Prikl. Khim. Leningrad 46, 360 (1973).

    Google Scholar 

  101. F. Ruiz Bevia, D. Prats Rico, V. Gomis Yagües, and P. Varo Galvan, Fluid Phase Equilibria 18, 171 (1984).

    Google Scholar 

  102. F. Ruiz, D. Prats, and V. Gomis, J. Chem. Eng. Data 30, 412 (1985).

    Google Scholar 

  103. I. Nagata, Y. Nakamiya, K. Katoh, and J. Koyabu, Thermochim. Acta 45, 153 (1981).

    Google Scholar 

  104. I. Nagata, Fluid Phase Equilibria 26, 59 (1986).

    Google Scholar 

  105. I. Nagata, Thermochim. Acta 127, 109 (1988).

    Google Scholar 

  106. I. Nagata, Thermochim. Acta 127, 337 (1988).

    Google Scholar 

  107. A.-B. Salem, J. Chem. Eng. Jpn. 12, 236 (1979).

    Google Scholar 

  108. F. Ruiz Bevia and D. Prats Rico, Fluid Phase Equilibria 10, 95 (1983).

    Google Scholar 

  109. F. Ruiz Bevia and D. Prats Rico, Fluid Phase Equilibria 10, 77 (1983).

    Google Scholar 

  110. K. A. Varteressian and M. R. Fenske, Ind. Eng. Chem. 28, 928 (1936).

    Google Scholar 

  111. F. Ruiz, D. Prats, and V. Gomis, J. Chem. Eng. Data 29, 147 (1984).

    Google Scholar 

  112. F. Ruiz, D. Prats, and V. Gomis, An. Quim. 82, 393 (1986).

    Google Scholar 

  113. J. Griswold, P. L. Chu, and W. O. Winsauer, Ind. Eng. Chem. 41, 2352 (1949).

    Google Scholar 

  114. J. F. K. Huber, C. A. M. Meijers, and J. A. R. J. Hulsman, Anal. Chem. 44, 111 (1972).

    Google Scholar 

  115. V. U. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. Leningrad 37, 2324 (1963).

    Google Scholar 

  116. A. Arce, A. Blanco, M. Blanco, A. Soto, and I. Vidal, Can. J. Chem. Eng. 72, 935 (1994).

    Google Scholar 

  117. J. F. McCants, J. H. Jones, and W. H. Hopson, Ind. Eng. Chem. 45, 454 (1953).

    Google Scholar 

  118. I. Nagata, K. Tamura, and A. Ksiąz czak, J. Chem. Thermodyn. 27, 1147 (1995).

    Google Scholar 

  119. I. Nagata, Thermochim. Acta 186, 123 (1991).

    Google Scholar 

  120. I. Nagata, Thermochim. Acta 208, 61 (1992).

    Google Scholar 

  121. I. Nagata, Thermochim. Acta 210, 281 (1992).

    Google Scholar 

  122. N. Peschke and S. I. Sandler, J. Chem. Eng. Data 40, 315 (1995).

    Google Scholar 

  123. L. S. Mason and E. R. Washburn, J. Amer. Chem. Soc. 59, 2976 (1937).

    Google Scholar 

  124. I. Nagata, Thermochim. Acta 232, 285 (1994).

    Google Scholar 

  125. I. Nagata, Thermochim. Acta 214, 339 (1993).

    Google Scholar 

  126. I. Nagata, K. Tamura, H. Kataoka, and A. Ksiąz czak, J. Chem. Eng. Data 41, 1346 (1996).

    Google Scholar 

  127. I. Nagata and K. Tamura, J. Chem. Eng. Data 41, 873 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, K., Chen, Y., Tada, K. et al. Representation of Multicomponent Liquid-Liquid Equilibria for Aqueous and Organic Solutions Using a Modified UNIQUAC Model. Journal of Solution Chemistry 29, 463–488 (2000). https://doi.org/10.1023/A:1005133016947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005133016947

Navigation