Skip to main content
Log in

The ‘Standard’ Sun Modelling and Helioseismology

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The ‘standard’ solar model is based on a number of simplifying assumptions and depends on knowledge of the physical properties of matter in the Sun. Given these assumptions, the constraint that the model have the observed surface luminosity provides an estimate of the initial solar helium abundance. From helioseismic analyses further information can be obtained about the present composition, including a fairly precise measure of the envelope helium abundance and an estimate of the hydrogen profile in the radiative interior. It must be emphasized, however, that these inferences may suffer from systematic error arising from incomplete knowledge about the equation of state and opacity of the solar interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antia, H. M. and Chitre, S. M.: 1998, ‘Determination of temperature and chemical composition profiles in the solar interior from seismic models', Astron. Astrophys., submitted.

  • Backus, G. and Gilbert, F.: 1968, ‘The resolving power of gross Earth data', Geophys. J. R. astr. Soc. 16, 169–205.

    MATH  ADS  Google Scholar 

  • Bahcall, J. N. and Pinsonneault, M. H.: 1995, ‘Solar models with helium and heavy-element diffusion', Rev. Mod. Phys. 67, 781–808.

    Article  ADS  Google Scholar 

  • Basu, S.: 1998, ‘Effects of errors in the solar radius on helioseismic inferences', Mon. Not. R. astr. Soc. 298, 719–728.

    Article  ADS  Google Scholar 

  • Basu, S. and Antia, H. M.: 1995, ‘Helium abundance in the solar envelope', Mon. Not. R. astr. Soc. 276, 1402–1408.

    ADS  Google Scholar 

  • Basu, S. and Christensen-Dalsgaard, J.: 1997, ‘Equation of state and helioscismic inversions', Astron. Astrophys. 322, L5-L8.

    ADS  Google Scholar 

  • Basu, S., Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y., Isaak, G. R., New, R., Schou, J., Thompson, M. J. and Tomczyk, S.: 1997, ‘Solar internal sound speed as inferred from combined BiSON and LOWL oscillation frequencies', Mon. Not. R. astr. Soc. 291, 243–251.

    ADS  Google Scholar 

  • Basu, S., Christensen-Dalsgaard, J., Pérez Hernández, F. and Thompson, M. J.: 1996, ‘Filtering out near-surface uncertainties from helioseismic inversions', Mon. Not. R. astr. Soc. 280, 651–660.

    ADS  Google Scholar 

  • Böhm-Vitense, E.: 1958, ‘Über die Wasserstoffkonvcktionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte', Z. Astrophys. 46, 108–143.

    ADS  Google Scholar 

  • Chaboyer, B., Demarque, P. and Pinsonneault, M. H.: 1995, ‘Stellar models with microscopic diffusion and rotational mixing, 1. Application to the Sun', Astrophys. J. 441, 865–875.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J. and Berthomieu, G.: 1991, ‘Theory of solar oscillations', in Cox, A. N., Livingston, W. C. and Matthews, M. (eds), Solar interior and atmosphere, Space Science Series, University of Arizona Press, pp. 401–478.

  • Christensen-Dalsgaard, J. and Däppen, W.: 1992, ‘Solar oscillations and the equation of state', Astron. Astrophys. Rev. 4, 267–361.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J. and Thompson, M. J.: 1997, ‘On solar p-mode frequency shifts caused by near-surface model changes', Mon. Not. R. astr. Soc. 284, 527–540.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Däppen, W., Ajukov, S. V., et al.: 1996, ‘The current state of solar modeling', Science 272, 1286–1292.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Duvall, T. L., Gough, D. O., Harvey, J. W. and Rhodes Jr, E. J.: 1985, ‘Speed of sound in the solar interior', Nature 315, 378–382.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D. O. and Pérez Hernández, F.: 1988, ‘Stellar disharmony', Mon. Not. R. astr. Soc. 235, 875–880.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D. O. and Thompson, M. J.: 1989, ‘Differential asymptotic sound-speed inversions', Mon. Not. R. astr. Soc. 238, 481–502.

    ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Proffitt, C. R. and Thompson, M. J.: 1993, ‘Effects of diffusion on solar models and their oscillation frequencies', Astrophys. J. 403, L75-L78.

    Article  ADS  Google Scholar 

  • Cox, A. N., Guzik, J. A. and Kidman, R. B.: 1989, ‘Oscillations of solar models with internal element diffusion', Astrophys. J. 342, 1187–1206.

    Article  ADS  Google Scholar 

  • Däppen, W. and Gough, D. O.: 1986, ‘Progress report on helium abundance determination', in Gough, D. O. (ed.), Seismology of the Sun and the distant Stars, Reidel, Dordrecht, pp. 275–280.

    Google Scholar 

  • Däppen, W.: 1998, ‘Microphysics' equation of state', Space Sci. Rev., this volume.

  • Duvall, T. L.: 1982, ‘A dispersion law for solar oscillations', Nature 300, 242–243.

    Article  ADS  Google Scholar 

  • Dziembowski, W. A., Pamyatnykh, A. A. and Sienkiewicz, R.: 1990, ‘Solar model from the helioseismology and the neutrino flux problem', Mon. Not. R. astr. Soc. 244, 542–550.

    ADS  Google Scholar 

  • Dziembowski, W. A., Pamyatnykh, A. A. and Sienkiewicz, R.: 1991, ‘Helium content in the solar convective envelope from helioseismology', Mon. Not. R. astr. Soc. 249, 602–605.

    ADS  Google Scholar 

  • Dziembowski, W. A.: 1998, ‘Shortcomings of standard solar model', Space Sci. Rev., this volume.

  • Elliott, J. R. and Gough, D. O.: 1998, ‘Calibration of the thickness of the solar tachocline', Astrophys. J., submitted.

  • Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A., New, R., Speake, C. C. and Whecler, S. J.: 1994, ‘Solar p-mode frequencies and their dependence on solar activity: recent results from the BISON network', Astrophys. J. 434, 801–806.

    Article  ADS  Google Scholar 

  • Gough, D. O.: 1984, ‘Towards a solar model', Mem. Soc. Astron. Ital. 55, 13–35.

    ADS  Google Scholar 

  • Gough, D. O.: 1993, ‘Course 7. Linear adiabatic stellar pulsation', in Zahn, J.-P. and Zinn-Justin, J. (eds), Astrophysical fluid dynamics, Les Houches Session XLVII, Elsevier, Amsterdam, pp. 399–560.

    Google Scholar 

  • Gough, D. O. and Kosovichev, A. G.: 1990, ‘Using helioseismic data to probe the hydrogen abundance in the solar core', in Berthomieu G. and Cribier M. (eds), Proc. IAU Colloquium No 121, Inside the Sun, Kluwer, Dordrecht, pp. 327–340.

    Google Scholar 

  • Gough, D. O. and Toomre, J.: 1991, ‘Seismic observations of the solar interior', Ann. Rev. Astron. Astrophys. 29, 627–685.

    Article  ADS  Google Scholar 

  • Gough, D. O. and Weiss, N. O.: 1976, ‘The calibration of stellar convection theories', Mon. Not. R. astr. Soc. 176, 589–607.

    ADS  Google Scholar 

  • Gough, D. O., Kosovichev, A. G., Toomre, J., et al.: 1996, ‘The seismic structure of the Sun', Science 272, 1296–1300.

    ADS  Google Scholar 

  • Grevesse, N. and Nocls, A.: 1993, ‘Cosmic abundances of the elements', in Prantzos, N., Vangioni-Flam, E. and Cassé, M. (eds), Origin and evolution of the Elements, Cambridge University Press, Cambridge, pp. 15–25.

    Google Scholar 

  • Grevesse, N., and Sauval, A. J.: 1998, ‘Standard Solar Composition', Space Sci. Rev., this volume.

  • Iglesias, C. A. and Rogers, F. J.: 1996, ‘Updated OPAL opacitics', Astrophys. J. 464, 943–953.

    Article  ADS  Google Scholar 

  • Iglesias, C. A., Rogers, F. J. and Wilson, B. G.: 1992, ‘Spin-orbit interaction effects on the Rosseland mean opacity', Astrophys. J. 397, 717–728.

    Article  ADS  Google Scholar 

  • Kippenhahn, R. and Weigert, A.: 1990, Stellar structure and evolution, Springer-Verlag, Berlin.

    Google Scholar 

  • Kosovichev, A. G.: 1997, ‘Inferences of element abundances from helioseismic data', in Habbal, S R. (ed.), Robotic Exploration Close to the Sun: Scientific Basis, AIP Conf. Proc. 385, Amer.Inst Phys., Woodbury, NY, pp. 159–166.

    Google Scholar 

  • Kosovichev, A. G., Christensen-Dalsgaard, J., Däppen, W., Dziembowski, W. A., Gough, D. O. and Thompson, M. J.: 1992, ‘Sources of uncertainty in direct seismological measurements of the solar helium abundance', Mon. Not. R. astr. Soc. 259, 536–558.

    ADS  Google Scholar 

  • Michaud, G. and Proffitt, C. R.: 1993, ‘Particle transport processes', in Baglin, A. and Weiss, W. W. (eds), Proc. IAU Colloq. 137: Inside the stars, PASPC 40, 246–259.

  • Mihalas, D., Däppen, W. and Hummer, D. G.: 1988, ‘The equation of state for stellar envelopes. II Algorithm and selected results', Astrophys. J. 331, 815–825.

    Article  ADS  Google Scholar 

  • Noerdlinger, P. D.: 1977, ‘Diffusion of helium in the Sun', Astron. Astrophys. 57, 407–415.

    ADS  Google Scholar 

  • Pérez Hernández, F. and Christensen-Dalsgaard, J.: 1994, ‘The phase function for stellar acoustic oscillations — III. The solar case', Mon. Not. R. astr. Soc. 269, 475–492.

    ADS  Google Scholar 

  • Pijpers, F. P. and Thompson, M. J.: 1992, ‘Faster formulations of the optimally localized average method for helioseismic inversion', Astron. Astrophys. 262, L33-L36.

    ADS  Google Scholar 

  • Richard, O., Vauclair, S., Charbonnel, C. and Dziembowski, W. A.: 1996, ‘New solar models including helioseismological constraints and light-element depletion', Astron. Astrophys. 312, 1000–1011.

    ADS  Google Scholar 

  • Rogers, F. J., Swenson, F. J. and Iglesias, C. A.: 1996, ‘OPAL Equation-of-State Tables for Astrophysical Applications] Astrophys. J. 456, 902–908.

    Article  ADS  Google Scholar 

  • Rosenthal, C. S.: 1997, ‘Convective effects on mode frequencies', in Pijpers, F. P., Christensen Dalsgaard, J. and Rosenthal, C. S. (eds), SCORe '96: Solar Convection and Oscillations and their Relationship, Kluwer, Dordrecht, p. 145–160.

    Google Scholar 

  • Schou, J., Antia, H. M., Basu, S., et al.: 1998, ‘Helioseismic studies of differential rotation in the solar envelope by the Solar Oscillations Investigation using the Michelson Doppler Imager’ Astrophys. J. 505, in the press.

  • Shibahashi, H. and Takata, M.: 1996, ‘A scismic model deduced from the sound-speed distribution and an estimate of the neutrino flux', Publ. Astron. Soc. Japan 48, 377–387.

    ADS  Google Scholar 

  • Takata, M. and Shibahashi, H.: 1998, ‘Solar models based on helioseismology and the solar neutrino problem', Astrophys. J. 504, in the press.

  • Tomczyk, S., Streander, K., Card, G., Elmore, D., Hull, H. and Caccani, A.: 1995, ‘An instrument to observe low-degree solar oscillations', Solar Phys. 159, 1–21.

    Article  ADS  Google Scholar 

  • Turck-Chièze, S.: 1998, ‘Composition and opacity in the solar interior', Space Sci. Rev., this volume

  • Turcoue, S., and Christensen-Dalsgaard, J., 1998, ‘Solar models with non-standard chemical composition', Space Sci. Rev., this volume.

  • Vauclair, S.: 1998, ‘Element settling in the solar interior', Space Sci. Rev., this volume.

  • Vorontsov, S. V., Baturin, V. A. and Pamyatnykh, A. A.: 1991, ‘Seismological measurement of solar helium abundance', Nature 349, 49–51.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen-Dalsgaard, J. The ‘Standard’ Sun Modelling and Helioseismology. Space Science Reviews 85, 19–36 (1998). https://doi.org/10.1023/A:1005116132024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005116132024

Navigation