Skip to main content
Log in

Base Equilibria of Substituted Pyridines in Nitromethane

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the framework of our studies on acid=nbase equilibria in systems comprisingsubstituted pyridines and nonaqueous solvents, acid dissociation constants havebeen determined potentiometrically for a variety of cationic acids conjugatedwith pyridine and its derivatives in the polar protophobic aprotic solvent nitromethane. The potentiometric method enabled a check as to whether and to whatextent cationic homoconjugation equilibria of the BH+/B type, as well as cationicheteroconjugation equilibria in BH+/B1 systems without proton transfer, are setup in nitromethane. The equilibrium constants were compared with thosedetermined in water and two other polar protophobic aprotic solvents, propylenecarbonate and acetonitrile. The pK a values of acids conjugate to the N-bases innitromethane fall in the pK a range of 5.84 to 17.67, i.e., 6 to 7 pK a units, onaverage, higher than in water, 1 to 2 units higher than in propylene carbonate,and less than 1 unit lower than in acetonitrile. This means that the basicity ofthe pyridine derivatives increases on going from propylene carbonate throughnitromethane to acetonitrile. Further, it was found that the sequence of the pK achanges of the protonated amines was consistent in all three media, thus providingthe basis for establishing linear correlations among these values. In the majorityof the BH+/B systems in nitromethane, cationic homoconjugation equilibria havebeen established. The cationic homoconjugation constants, log K BHB+, arerelatively low, falling in the range 1.60–2.89. A comparison of the homoconjugationconstants in nitromethane with those in propylene carbonate and acetonitrile showsthat nitromethane is a more favorable solvent for the cationic homoconjugationequilibria than the other two solvents. Moreover, results of the potentiometricmeasurements revealed that cationic heteroconjugation equilibria were not presentin the majority of the BH+/B1 systems in nitromethane. The heteroconjugationconstant could be determined in one system only, with logdiK BHB1 + = 2.56.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. F. Coetzee, Progr. Phys. Org. Chem. 4, 45 (1967).

    Google Scholar 

  2. N. G. Sellers, P. N. P. Eller, and J. A. Caruso, J. Phys. Chem. 76, 3618 (1972).

    Google Scholar 

  3. B. Brzeziń ski and G. Zundel, J. Chem. Soc. Faraday Trans. II 72, 2127 (1976).

    Google Scholar 

  4. E. Grech, Z. Malarski, and L. Sobczyk, Spectrosc. Lett. 34, 292 (1975).

    Google Scholar 

  5. V. Van Even, and M. C. Haulait-Pirson, J. Solution Chem. 6, 757 (1977).

    Google Scholar 

  6. M. C. Haulait-Pirson and M. De Pauw, J. Phys. Chem. 84, 1381 (1980).

    Google Scholar 

  7. Z. Pawlak, Roczn. Chem. 47, 347 (1973).

    Google Scholar 

  8. J. F. Coetzee and G. R. Padmanabhan, J. Amer. Chem. Soc. 87, 5005 (1965).

    Google Scholar 

  9. Z. Pawlak and R. G. Bates, J. Chem. Thermodyn. 14, 1035 (1982).

    Google Scholar 

  10. J. F. Coetzee, G. R. Padmanabhan, and G. P. Cunningham, Talanta 11, 93 (1964).

    Google Scholar 

  11. I. M. Kolthoff and M. K. Chantooni, Jr., J. Amer. Chem. Soc. 91, 4621 (1969).

    Google Scholar 

  12. Z. Pawlak, S. Kuna, M. Richert, E. Giersz, A. Liwo, and L. Chmurzyń ski, J. Chem. Thermodyn. 26, 483 (1994).

    Google Scholar 

  13. S. Kuna, Z. Pawlak, and M. Tusk, J. Chem. Soc., Faraday Trans I 78 2685 (1982).

    Google Scholar 

  14. A. Wawrzynó w, A. Liwo, E. Kaczmarczyk, and L. Chmurzyń ski, J. Solution Chem. 27 463 (1998).

    Google Scholar 

  15. D. Augustin-Nowacka and L. Chmurzyń ski, Anal. Chim. Acta 381, 215 (1999).

    Google Scholar 

  16. U. Mayer, Coord. Chem. Rev. 21, 159 (1976).

    Google Scholar 

  17. J. Barthel, R. Wachter, and H. H. Gores, Modern Aspects of Electrochemistry, Vol 13, (Plenum, New York, 1979).

    Google Scholar 

  18. J. J. Christensen, L. D. Hansen, and R. M. Izatt, Handbook of Proton Ionization Heats and Related Thermodynamic Quantities (Brigham Young University, Provo, Utah, 1976).

    Google Scholar 

  19. L. Chmurzyń ski, M. Nesterowicz, G. Wawrzyniak, E. Kaczmarczyk, and Z. Warnke, Aust. J. Chem. 49, 931 (1996)

    Google Scholar 

  20. H. Smagowski and G. Wawrzyniak, Pol. J. Chem. 55, 2193 (1981).

    Google Scholar 

  21. L. Chmurzyń ski, A. Wawrzynó w, and Z. Pawlak, Electrochim Acta 35, 665 (1990).

    Google Scholar 

  22. L. Chmurzyń ski, A. Wawrzynó w, and Z. Pawlak, J. Chem. Soc., Faraday Trans. I 85, 4269 (1989).

    Google Scholar 

  23. B. A. Korolev and E. T. Kaszkowskaja, Zh. Obs. Khim. 49, 909 (1979).

    Google Scholar 

  24. J. Kostrowicki and A. Liwo, Comput. Chem. 8, 91,101 (1984)

    Google Scholar 

  25. J. Kostrowicki and A. Liwo, Talanta 37, 645 (1990).

    Google Scholar 

  26. J. Kostrowicki and A. Liwo, Comput. Chem. 11, 195 (1987).

    Google Scholar 

  27. I. M. Kolthoff and M. K. Chantooni, Jr., J. Phys. Chem. 66, 2270 (1968).

    Google Scholar 

  28. A. G. Kozachenko, E. I. Matrosov, and M. I. Kabachnik, Izv. Akad. Nauk SSSR, Ser. Khim., p. 1476 (1976).

  29. L. Chmurzyń ski, Pol. J. Chem. 66, 1165 (1992).

    Google Scholar 

  30. L. Chmurzyń ski, J. Chem. Soc., Faraday Trans. I 87, 1729 (1991).

    Google Scholar 

  31. L. Chmurzyń ski, Anal. Chim. Acta 321, 237 (1996).

    Google Scholar 

  32. H. Smagowski, Acids Strength in Aprotic Non-aqueous Solvents (University of Gdań sk, Gdań sk Poland 1973).

    Google Scholar 

  33. A. J. Parker, Quart. Rev. 16, 163 (1962).

    Google Scholar 

  34. B. A. Korolev and K. A. Osmolovskaa, Zh. Obshch. Khim. 49, 898 (1977).

    Google Scholar 

  35. C. Reichardt, Solvent and Solvent Effects in Organic Chemistry (VCH Publishers, Weinheim, 1988).

    Google Scholar 

  36. L. Chumrzyń ski, Anal Chim. Acta 329, 267 (1996).

    Google Scholar 

  37. L. Chmurzyń ski, A. Liwo, and A. Tempczyk, Z. Naturforsch. 44b, 1263 (1989).

    Google Scholar 

  38. L. Chmurzyń ski, Anal. Chim. Acta 334, 155 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin-Nowacka, D., Chmurzyński, L. Base Equilibria of Substituted Pyridines in Nitromethane. Journal of Solution Chemistry 29, 837–846 (2000). https://doi.org/10.1023/A:1005100331099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005100331099

Navigation