Skip to main content
Log in

Three- and Four-Dimensional Einstein-like Manifolds and Homogeneity

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The aim of this paper is to study three- and four-dimensional Einstein-like Riemannian manifolds which are Ricci-curvature homogeneous, that is, have constant Ricci eigenvalues. In the three-dimensional case, we present the complete classification of these spaces while, in the four-dimensional case, this classification is obtained in the special case where the manifold is locally homogeneous. We also present explicit examples of four-dimensional locally homogeneous Riemannian manifolds whose Ricci tensor is cyclic-parallel (that is, are of type A) and has distinct eigenvalues. These examples are invalidating an expectation stated by F. Podestá and A. Spiro, and illustrating a striking contrast with the three-dimensional case (where this situation cannot occur). Finally, we also investigate the relation between three- and four-dimensional Einstein-like manifolds of type A and D'Atri spaces, that is, Riemannian manifolds whose geodesic symmetries are volume-preserving (up to sign).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbena, E., Garbiero, S. and Vanhecke, L.: Einstein-like metrics on three-dimensional Riemannian homogeneous manifolds, Simon Stevin 66 (1992), 173–182.

    Google Scholar 

  2. Bérard Bergery, L.: Les espaces homogènes riemanniens de dimension 4, In: L. Bérard Bergery, M. Berger, C. Houzel (eds), Géométrie riemannienne en dimension 4, CEDIC, Paris, 1981.

    Google Scholar 

  3. Berndt, J. and Vanhecke, L.: Two natural generalizations of locally symmetric spaces, Differential Geom. Appl. 2 (1992), 57–80.

    Google Scholar 

  4. Besse, A.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  5. Boeckx, E.: Einstein-like semi-symmetric spaces, Arch. Math. (Brno) 29 (1993), 235–240.

    Google Scholar 

  6. Boeckx, E., Kowalski, O. and Vanhecke, L.: Riemannian Manifolds of Conullity Two, World Scientific, Singapore, 1996.

    Google Scholar 

  7. Bueken, P.: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures ρ 1 = ρ 2ρ 3, J. Math. Phys. 37 (1996), 4062–4075.

    Google Scholar 

  8. Calvaruso, G. and Vanhecke, L.: Special ball-homogeneous spaces, Z. Anal. Anwendungen 16 (1997), 789–800.

    Google Scholar 

  9. Calvaruso, G. and Vanhecke, L.: Ball-homogeneous spaces, Proc. Workshop on Recent Topics in Differential Geometry, Santiago de Compostela, 1997, L. A. Cordero, E. García-Rio (eds.), Publ. Depto. Geometría y Topología, Univ. Santiago de Compostela 89 (1998), 35–51.

  10. D'Atri, J. E. and Nickerson, H. K.: Geodesic symmetries in spaces with special curvature tensor, J. Differential Geom. 9 (1974), 251–262.

    Google Scholar 

  11. D'Atri, J. E.: Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J. 22 (1975), 71–76.

    Google Scholar 

  12. Gray, A.: Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259–280.

    Google Scholar 

  13. Jensen, G. R.: Homogeneous Einstein spaces of dimension four, J. Differential Geom. 3 (1969), 309–349.

    Google Scholar 

  14. Kowalski, O.: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale, 1983, 131–158.

  15. Kowalski, O.: A note to a theorem by K. Sekigawa, Comment. Math. Univ. Carolinae 30 (1989), 85–88.

    Google Scholar 

  16. Kowalski, O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ρ 1 = ρ 2ρ 3, Nagoya Math. J. 132 (1993), 1–36.

    Google Scholar 

  17. Kowalski, O. and Vanhecke, L.: A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Amer. Math. Soc. 91 (1984), 433–435.

    Google Scholar 

  18. Kowalski, O., Prüfer, F. and Vanhecke, L.: D'Atri spaces, In: S. Gindikin (ed.), Topics in Geometry: In Memory of Joseph D'Atri, Progr. Nonlinear Differential Equations Appl. 20, Birkhäuser, Boston, 1996, pp. 241–284.

    Google Scholar 

  19. Podestà, F. and Spiro, A.: Four-dimensional Einstein-like manifolds and curvature homogeneity, Geom. Dedicata 54 (1995), 225–243.

    Google Scholar 

  20. Singer, I.M.: Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685–697.

    Google Scholar 

  21. Takagi, H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries, Tôhoku Math. J. 27 (1975), 103–110.

    Google Scholar 

  22. Tod, K. P.: Four-dimensional D'Atri Einstein spaces are locally symmetric, Differential Geom. Appl., to appear.

  23. Yamato, K.: A characterization of locally homogeneous Riemann manifolds of dimension three, Nagoya Math. J. 123 (1991), 77–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueken, P., Vanhecke, L. Three- and Four-Dimensional Einstein-like Manifolds and Homogeneity. Geometriae Dedicata 75, 123–136 (1999). https://doi.org/10.1023/A:1005060208823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005060208823

Navigation