Skip to main content
Log in

Near Infrared Spectrometer for the Near Earth Asteroid Rendezvous Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Near-Infrared Spectrometer (NIS) instrument on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft is designed to map spectral properties of the mission target, the S-type asteroid 433 Eros, at near-infrared wavelengths diagnostic of the composition of minerals forming S asteroids. NIS is a grating spectrometer, in which light is directed by a dichroic beam-splitter onto a 32-element Ge detector (center wavelengths, 816–1486 nm) and a 32-element InGaAs detector (center wavelengths, 1371–2708 nm). Each detector reports a 32-channel spectrum at 12-bit quantization. The field-of-view is selectable using slits with dimensions calibrated at 0.37° × 0.76° (narrow slit) and 0.74° × 0.76° (wide slit). A shutter can be closed for dark current measurements. For the Ge detector, there is an option to command a 10x boost in gain. A scan mirror rotates the field-of-view over a 140° range, and a diffuse gold radiance calibration target is viewable at the sunward edge of the field of regard. Spectra are measured once per second, and up to 16 can be summed onboard. Hyperspectral image cubes are built up by a combination of down-track spacecraft motion and cross-track scanning of the mirror. Instrument software allows execution of data acquisition macros, which include selection of the slit width, number of spectra to sum, gain, mirror scanning, and an option to interleave dark spectra with the shutter closed among asteroid observations. The instrument was extensively characterized by on-ground calibration, and a comprehensive program of in-flight calibration was begun shortly after launch. NIS observations of Eros will largely be coordinated with multicolor imaging from the Multispectral Imager (MSI). NIS will begin observing Eros during approach to the asteroid, and the instrument will map Eros at successively higher spatial resolutions as NEAR's orbit around Eros is lowered incrementally to 25 km altitude. Ultimate products of the investigation will include composition maps of the entire illuminated surface of Eros at spatial resolutions as high as ∼300 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.: 1974, J. Geophys. Res. 79, 4829–4836.

    Google Scholar 

  • Allen, C., Morris, R., and McKay, D.: 1994, J. Geophys. Res. 99, 23173–23185.

    Google Scholar 

  • Bell, J. F., Davis, D. R., Hartmann, W. K., and Gaffey, M. J.: 1989, in R. P. Binzel, T. Gehrels, and M. S. Matthews (eds.), 'Asteroids: The Big Picture', Asteroids II, University of Arizona Press, Tucson, pp. 921–948.

    Google Scholar 

  • Bruegge, C. J., Stiegman, A. E., Rainen, R. A., and Springsteen, A.W.: 1993, Opt. Eng. 32, 805–814.

    Google Scholar 

  • Chapman, C. R. and Gaffey, M. J.:1979, in T. Gehrels (ed.), 'Reflectance Spectra for 277 Asteroids', Asteroids, University of Arizona Press, Tucson, pp. 655–687.

    Google Scholar 

  • Chapman, C., Morrison, D., and Zellner, B.: 1975, Icarus 25, 104-130.

    Google Scholar 

  • Cheng et al.: 1997a, 'Near-Earth Asteroid Rendezvous: Mission Overview,' JGR Planets, in press.

  • Cheng et al.: 1997b, Space Sci. Rev., this volume.

  • Clark, B. E., Fanale, F., and Salisbury, J. W.: 1992, Icarus 97, 288–297.

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V., and Calvin, W. M.: 1993, The U.S.G.S. Digital Spectral Library: Version 1: 0.2 to 3.0 um. U.S. Geol. Surv. Open File Report 93–592.

  • Cloutis, E. and Gaffey, M.: 1991, J. Geophys. Res. 96, 22809–22826.

    Google Scholar 

  • Cloutis, E., Gaffey, M., Jackowski, T., and Reed, K.: 1986, J. Geophys. Res. 91, 11641–11653.

    Google Scholar 

  • Fanale, F., Clark, B. E., and Bell, J. B.: 1992, J. Geophys. Res. 97, 20863–20874.

    Google Scholar 

  • Farquhar, R. W., Dunham, D. W., and McAdams, J. V.: 1995, J. Astron. Sci. 43, 353–372.

    Google Scholar 

  • Fischer, E. and Pieters, C.: 1994, Icarus 111, 475–488.

    Google Scholar 

  • Gaffey, M. J., Bell, J. F., and Cruikshank, D. P.: 1989, in R. P. Binzel et al. (eds.), 'Reflectance Spectroscopy and Asteroid Surface Mineralogy', Asteroids II, University Arizona Press, Tucson, pp. 98–127.

    Google Scholar 

  • Gaffey, S. J., McFadden, L. A., Pieters, C. M., and Nash, D. B.: 1993a, in C. Pieters and P. Englert (eds.), 'Ultraviolet, Visible, and Near-Infrared Reflectance Spectroscopy: Laboratory Spectra of Geologic Materials', Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge University Press, Cambridge, pp. 43–71.

    Google Scholar 

  • Gaffey, M., Bell, J. F., Brown, R. H., Burbine, T. H., Piatek, J. L., Reed, K. L., and Chaky, D. A.: 1993b, Icarus 106, 573–602.

    Google Scholar 

  • Gaffey, M. J., Burbine, T. H., and Binzel, R. P.: 1993c, Meteoritics 28, 168–187.

    Google Scholar 

  • Gehrels, T. and Tedesco, E. F.: 1979, 'Minor Planets and Related Objects. XXVIII. Asteroid Magnitudes and Phase Relations', Astron. J. 84, 1079–1087.

    Google Scholar 

  • Hawkins, S. E. et al.: 1997, Space Sci. Rev., this volume.

  • Hunt, G. R. and Salisbury, J. W.: 1970, Mod. Geol. 1, 283–300.

    Google Scholar 

  • Hunt, G. R., Salisbury, J. W., and Lenhoff, C. J.: 1971, Mod. Geol. 2, 195–205.

    Google Scholar 

  • Markov, A. M. (ed.): 1962, The Moon: A Russian View, University of Chicago.

  • McCord, T. B., Adams, J. B., and Johnson, T. V.: 1970, Science 168, 1445–1447.

    Google Scholar 

  • Morris, R.: 1977, 'Origin and Evolution of the Grain-Size Dependence of the Concentration of Fine-Grained Metal in Lunar Soils: the Maturation of Lunar Soils to a Steady-State Stage', in Proc. Lunar Planet. Sci. Conf. 8th, pp. 3719–3747.

  • Murchie, S. L. and Pieters, C. M.: 1996, J. Geophys. Res. 101, 2201–2214.

    Google Scholar 

  • Pieters, C. M. and Englert, P. A. J.: 1993a, Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge University Press, Cambridge.

    Google Scholar 

  • Pieters, C., Fischer, E., Rode, O., and Basu, A.: 1993b, J. Geophys. Res. 98, 20817–20824.

    Google Scholar 

  • Pieters, C. M. and McFadden, L. A.: 1994, Ann. Rev. Earth Planetary Sci. 22, 457–497.

    Google Scholar 

  • Santo, A. G., Lee, S. C., and Gold, R. E.: 1995, J. Astron. Sci. 43, 373–398.

    Google Scholar 

  • Stiegman, A. E., Bruegge, C. J., and Springsteen, A. W.: 1993, Opt. Eng. 32, 799–804.

    Google Scholar 

  • Tholen, D. J. and Barucci, M. A.: 1989, in R. P. Binzel, T. Gehrels, and M. S. Matthews (eds.), 'Asteroid Taxonomy', Asteroids II, University of Arizona Press, Tucson, pp. 1139–1150.

    Google Scholar 

  • Veverka et al.: 1997. 'An Overview of the NEAR Multispectral Imager (MSI)- Near Infrared Spectrometer (NIS) Investigation', JGR Planets, in press.

  • Wendlandt, W. W. and Hecht, H. G.: 1966, Reflectance Spectroscopy, Wiley, New York, 298 pp.

    Google Scholar 

  • Wetherill, G. and Chapman, C.: 1988, in J. Kerridge and M. Matthews (eds.), 'Asteroids and Meteorites', Meteorites and the Early Solar System, University of Arizona Press, Tucson, pp. 35–67.

    Google Scholar 

  • Zellner, B. and Gradie, J.: 1976, Icarus 28, 117–123.

    Google Scholar 

  • Zellner, B., Tholen, D., and Tedesco, E.:1985, Icarus 61, 355–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, J.W., Peacock, K., Darlington, E.H. et al. Near Infrared Spectrometer for the Near Earth Asteroid Rendezvous Mission. Space Science Reviews 82, 101–167 (1997). https://doi.org/10.1023/A:1005015719887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005015719887

Keywords

Navigation