Skip to main content
Log in

Uncertainty in Paleoecological Studies of Mercury in Sediment Cores

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Increased recognition of the ecological damage of mercury (Hg) has focused attention on quantifying spatial and temporal patterns of Hg deposition. Studies are commonly based on core chronologies and use a combination of techniques to measure parameters such as bulk density, percent solids, Hg concentration, and radionuclide activity. Little attention is generally devoted to the propagated error associated with these measurements. We identified the impact of sources of uncertainty on stratigraphic Hg determinations for Florida Everglades and Lake Erie cores. Large errors may be introduced by converting wet sample Hg content to dry-weight concentrations. Drying of sediments at 55 °C caused Hg losses of 18%. Samples, air-dried at room temperature, retained considerable moisture and required corrections for remaining water content. Frozen sediments did not lose Hg during a 72-day storage. Random error in radionuclide analysis of cores resulted in dating uncertainty of ±1.2 yr in 10 yr old deposits. This error increased to ±20 yr in 100 yr old sediments. Propagation of small errors in each step of the analysis (while adhering to strict QA/QC criteria) produced compounded uncertainties of ±11 and ±29% in Hg concentrations under different analytical rigor, and errors of up to ±73% in Hg accumulation rates in older sediments. Enrichment factors, comparing uncertain recent and historic Hg accumulation rates, differed by as much as ±48%. Uncertainty in paleoecological studies of mercury needs to be documented in order to correctly evaluate trends and remediation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby, P. G. and Oldfield, F.: 1983, Hydrobiologia 103, 29.

    Google Scholar 

  • Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, M. J., Oldfield, F., Anderson, N. J. and Battarbee, R. W.: 1986, Hydrobiologia 143, 21.

    Google Scholar 

  • Binford, M. W.: 1990, J. Paleolimnol. 3, 253.

    Google Scholar 

  • Delfino, J. J., Crisman, T. L., Gottgens, J. F., Rood, B. E. and Earle, C. D. A.: 1993, Spatial and Temporal Distribution of Mercury in Florida Everglades and Okefenokee Wetland Sediments, University of Florida, Gainesville.

    Google Scholar 

  • Dulinski, M. and Dominik, J.: 1992, Nucl. Geophys. 6, 237.

    Google Scholar 

  • E.P.R.I.: 1996, Protocol for Estimating Historic Atmospheric Mercury Deposition, Report TR-106768, Palo Alto, CA, 60 pp.

  • Gäggeler, H., Von Gunten, H. R. and Nyffeler, U.: 1976, Earth Planet. Sci. Lett. 33, 119.

    Google Scholar 

  • Goldberg, E. D.: 1963, Radioactive Dating, Int. Atom. Energy. Ag. Vienna, pp. 121–131.

    Google Scholar 

  • Gottgens, J. F. and Crisman, T. L.: 1993, Can. J. Fish Aquat. Sci. 50, 1610.

    Google Scholar 

  • Gottgens, J. F. and Liptak, M. A.: Verh. Int. Verein. Limnol. (in press).

  • Kemp, A. L. W., Anderson, T. W., Thomas, R. L. and Mudrochova, A.: 1974, J. Sediment Petrol. 44(1), 207.

    Google Scholar 

  • Knoll, G. F.: 1979, Radiation Detection and Measurement, Wiley & Sons, New York, 762 pp.

    Google Scholar 

  • Rasmussen, P. E.: 1994, Environ. Sci. Technol. 28(13), 2233.

    Google Scholar 

  • Ritchie, J. C., McHenry, J. R. and Gill, A. C.: 1973, Limnol. Oceanogr. 18, 254.

    Google Scholar 

  • Robbins, J. A.: 1978, Biogeochemistry of Lead in the Environment, J. O. Nriagu (ed.), Elsevier Amsterdam.

  • Rood, B. E., Gottgens, J. F., Delfino, J. J., Earle, C. D. A. and Crisman, T. L.: 1995, Water, Air, and Soil Pollut. 80, 981.

    Google Scholar 

  • Schelske, C. L., Peplow, A., Brenner, M. and Spencer, C. N.: 1994, J. Paleolimnol. 10, 115.

    Google Scholar 

  • Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A. and Brezonik, P. L.: 1992, Science 257, 784.

    Google Scholar 

  • Turekian, K. K., Nozaki, Y. and Benninger, L.: 1977, Ann. Rev. Earth Planet. Sci. 5, 227.

    Google Scholar 

  • Urban, N. R., Eisenreich, S. J., Grigal, D. F. and Schurr, K. T.: 1990, Geochim. Cosmochim. Acta 34, 3327.

    Google Scholar 

  • U.S.E.P.A.: 1986, Test Method for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd ed., U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Walters Jr., L. J., Kovacik, T. L. and Herdendorf, C. E.: 1974, Ohio J. Science 74(1), 1.

    Google Scholar 

  • Wolter, K. M.: 1985, Introduction to Variance Estimation, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan F. Gottgens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottgens, J.F., Rood, B.E., Delfino, J.J. et al. Uncertainty in Paleoecological Studies of Mercury in Sediment Cores. Water, Air, & Soil Pollution 110, 313–333 (1999). https://doi.org/10.1023/A:1005015420188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005015420188

Navigation