Skip to main content
Log in

Inversion of Thick-Target Bremsstrahlung Spectra from Nonuniformly Ionised Plasmas

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The effects of non-uniform plasma target ionisation on the spectrum of thick-target HXR bremsstrahlung from a non-thermal electron beam are analysed. In particular the effect of the target ionisation structure on beam collisional energy losses, and hence on inversion of an observed photon spectrum to yield the electron injection spectrum, is considered and results compared with those obtained under the usual assumption of a fully ionised target.

The problem is formulated and solved in principle for a general target ionisation structure, then discussed in detail for the case of a step function distribution of ionisation with column depth as an approximation to the sharp coronal–chromospheric step structure in solar flare plasmas. It is found that such ionisation structure has very dramatic effects on derivation of the thick-target electron injection spectrum F0(E0) as compared with the result F*0(E 0) obtained under the usual assumption of a fully ionised target: (a) Inferred F*0 contain more electrons than F 0 and in some cases include electrons at energies where none are actually present. Although the total (energy-integrated) beam fluxes in the two cases do not differ by a factor of more than Aee/AeH, the spectral shapes can differ greatly over finite energy intervals resulting in the danger of misleading results for total fluxes obtained by extrapolation. (b) The unconstrained mathematical solution for F0 for any photon spectrum is never unique, while that for F*0 is unique. When the physical constraint F0 ≥ 0 is added, for some photon spectra solutions for F0 may not exist or may not be unique. (This is not an effect of noise but of real analytic ambiguity.) (c) For data corresponding to F*0 with a low-energy cut-off, or a cut-off or rapid enough exponential decline at high energies, a unique solution F0 does exist and we obtain a recursive summation for its evaluation.

Consequently, in future work on the inversion of HXR bremsstrahlung spectra it will be vital for algorithms to include the effects of target ionisation if spurious results on thick-target electron spectra are not to be inferred. Finally it is pointed out that the depth of the transition zone, and its evaporative evolution during flares may be derivable from its effect on the HXR spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, J. C.: 1971, Solar Phys. 18, 489.

    Google Scholar 

  • Brown, J. C.: 1972, Solar Phys. 26, 441.

    Google Scholar 

  • Brown, J. C.: 1973, Solar Phys. 28, 151.

    Google Scholar 

  • Brown, J. C.: 1975, in S. R. Kane (ed.), ‘Solar Gamma-, X-Ray, and EUV Radiation’, IAU Symp. 68, 245.

  • Brown, J. C. and Emslie, A. G.: 1988, Astrophys. J. 331, 554.

    Google Scholar 

  • Brown, J. C. and MacKinnon, A. L.: 1985, Astrophys. J. 292, L31.

    Google Scholar 

  • Craig, I. J. D. and Brown, J. C.: 1986, Inverse Problems in Astronomy, Hilger, Bristol.

    Google Scholar 

  • Emslie, A. G.: 1978, Astrophys. J. 224, 941.

    Google Scholar 

  • Gradshtein, I. S. and Ryzhik, I. M.: 1994, Tables of Integrals, Series and Products, Academic Press, New York.

    Google Scholar 

  • Johns, C. and Lin, R. P.: 1992, Solar Phys. 137, 121.

    Google Scholar 

  • Judge, P., Hubeny, V., and Brown, J. C.: 1997, Astrophys. J., in press.

  • Kuczma, M.: 1968, Functional Equations in a Single Variable, Polska Akademia Nauk, Monografie Matematyczna, vol. 46, PWN-Polish Scientific Publishers.

  • Lin, R. P. and Schwartz, R.: 1987, Astrophys. J. 312, 462.

    Google Scholar 

  • MacKinnon, A. L. and Brown, J. C.: 1989, Astron. Astrophys. 215, 371.

    Google Scholar 

  • Piana, M.: 1994, Astron. Astrophys. 288, 949.

    Google Scholar 

  • Santangelo, N.: 1973, Solar Phys. 29, 143.

    Google Scholar 

  • Thompson, A. M., Craig, I. J. D., Brown, J. C., and Fulber, C.: 1992, Astron. Astrophys. 265, 278.

    Google Scholar 

  • Tomblin, F. F.: 1972, Astrophys. J. 171, 377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J.C., McArthur, G.K., Barrett, R.K. et al. Inversion of Thick-Target Bremsstrahlung Spectra from Nonuniformly Ionised Plasmas. Solar Physics 179, 379–404 (1998). https://doi.org/10.1023/A:1005011107402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005011107402

Keywords

Navigation