Reduced-Form Modelling of Surface Water and Soil Chemistry for the Tracking and Analysis Framework

Abstract

A reduced-from modelling approach is used to predict soil and lake acidification as part of an integrated assessment of acid deposition effects and control strategies. The reduced-form model is based upon the mechanistic, lumped parameter watershed chemistry model, MAGIC (Model of Acidification of Groundwater in Catchments). Recent improvements to MAGIC are described, and its reduced-form representation in the Tracking and Analysis Framework (TAF), an integrated assessment model for decision and uncertainty analysis, is presented. Reduced-form models are developed for lake acid neutralising capacity (ANC), calcium, pH, and aluminium; and for soil base saturation. The model for lake ANC incorporates long-term depletion of the watershed acid neutralisation fraction, as is predicted to occur with MAGIC. In test calibrations for 33 representative watersheds in the Adirondacks, the resulting reduced-form model provides a close approximation to MAGIC, with average root mean square errors of 0.79 μeq l-1 for ANC, 1.09 μeq l-1 for calcium, 0.16 for pH, 2.52 μeq l-1 for aluminium, and 0.09% for soil base saturation. In addition, improved fish viability models are incorporated in the integrated assessment model, and predictions are demonstrated for a future deposition reduction scenario for the Adirondack region.

This is a preview of subscription content, access via your institution.

References

  1. Alcamo, J., Amann, M., Hettelingh, J., Holmberg, M., Hordijk, L., Kämäri, J., Kauppi, L., Kauppi, P., Kornai, G. and Makela, M.: 1987, “Acidification in Europe: A Simulation Model for Evaluating Control Stretegies”, Ambio 16(5), 232–245.

    Google Scholar 

  2. Baker, J. P., Bernard, D. P., Christensen, S. W., Scale, M. J., Freda, J., Heltcher, K., Marmorek, D., Rowe, L., Scanlon, P., Suter, G., Warren-Hicks, W. and Welbourn, P.: 1990, “Biological Effects of Changes in Surface Water Acid Base Chemistry“, NAPAP Report 13 in: State of Science and Technology, Volume II, National Acid Precipitation Assessment Program, Washington, DC.

    Google Scholar 

  3. Cosby, B. J., Wright, R. F., Gjessing, E., 1995a, “An Acidification Model (MAGIC) with Organic Acids Evaluation Using Whole-Catchment Manipulations in Norway”, J. Hydrol, 170, 101–122.

    Google Scholar 

  4. Cosby, B. J., Norton, S. A. and Kahl, J. S.: 1995b, “Using a Paired-Watershed Manipulation Experiment to Evaluate a Catchment-Scale Biogeochemical Model”, Sci. Tot. Environ (in press).

  5. Cosby, B. J., Hornberger, G. M. and Galloway, J. N.: 1995a, “Modelling the Effects of Acid Deposition: Assessment of a Lumped parameter Model of Soil Water and Streamwater Chemistry”, Water Resour. Res. 21, 51–63.

    Google Scholar 

  6. Cosby, B. J., Hornberger, G. M. and Galloway, J. N.: 1985b, “Modelling the Effects of Acid Deposition: Estimation of Long-Term Water Quality Responses in a Small Forested Catchment”, Water Resour. Res., 21, 1591–1601.

    Google Scholar 

  7. Ferrier, R. C., Jenkins, A., Cosby, B. J. and Wright, R. F., “Changes in Acidification of Lochs in Galloway, Southwestern Scotland II: The Relative Effects of Acid Deposition and Afforestation”, J. Hydrol. (in review).

  8. Hordijk, L.: 1991, “Use of the RAINS Model in Acid Rain Negotiations in Europe”, Environ. Sci. Tech., Vol. 25,No. 4, 596–603.

    Google Scholar 

  9. Husar, R. B., Sullivan, T. J. and Charles, D. F.: 1991, “Historical Trends in Atmospheric Sulfur Deposition and Methods for Assessing LongTerm Trends in Surface Water Chemistry”, Acid Deposition and Aquatic Ecosystems: Regional case Studies, D. F. Charles, Ed., Springer-Verlag, New York, 65–82.

    Google Scholar 

  10. Jenkins, A., Whitehead, P. G., Cosby, B. J. and Birks, H. J. B.L.: 1990, “Modelling Long-Term Acidification: A Comparison with Diatom Reconstructions and the Implications for Reversibility”, Phil. Trans. R. Soc. Lond. B., 327, 435–440.

    Google Scholar 

  11. Kämäari, J. (ed.),: 1990, Impact Models to Assess Regional Acidification, Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  12. Kanciruk, P., Eilers, J. M., McCord, R. A., Landers, D. H., Brakke, D. F. and Linthurst, R. A., June 1986, “Characteristics of Lakes in the Eastern United States”, Vol. III, EPA Report No. EPA/600/486/007c.

  13. Linthurst, R. A., Landers, D. H., Eilers, J., M., Keller, P. E., Brakke., Overton, W. S., Crowe, R., Meier, E. P., Kanciruk, P. and Jeffries, D. S.: 1986, “Regional Chemical Characteristics of Lakes in North America Part II: Eastern United States”, Water Air Soil Pollut. 31, 577–591.

    Google Scholar 

  14. Lumina Decision Systems,: 1996, Analytica v. 1.0 (http://www. lumina.com), Palo Alto, CA.

  15. NAPAP Integrated Assessment Report, November 1991, National Acid Precipitation Assessment Program, Washington, D.C.

  16. Overton, W. S., Kanciruk, P., Hook, L. A., Eilers, J. M., Landers, D. H., Brakke, D. F., Blick Jr., D. J., Linthurst, R. A., DeHaan, M. D., and Omernik, J. M., June 1986, “Characteristics of Lakes in the Eastern United States”, Vol. II, EPA Report No. EPA/600/486/ 007b.

  17. Posch, M. and Kämàri, J.: 1990, “Modelling Regional Acidification of Finnish Lakes”, Impact Models to Assess Regional Acidification, J. Kämäri, (Ed.), Kluwer Academic, Dordrecht, The Netherlands, 145–166.

    Google Scholar 

  18. Sinha, R., May 1996, “tegrated Assessment of Acid Deposition Impacts Using Reduced-Form Modelling”, M. S. Dissertation, Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA.

  19. Small, M. J., Cosby, B. J., Marnicio, R. J. and Henrion, M.: 1995, “Joint Application of an Empirical and Mechanistic Model for Regional Lake Acidification”, Environmental Monitoring and Assessment 35, 113–136.

    Google Scholar 

  20. Small, M. J. and Sutton, M. C.: 1986a, “A Regional pH-Alkalinity Relationship”, Wat. Res. 20, 335–343.

    Google Scholar 

  21. Small, Mitchell, J. and Sutton, Michael, C.: 1986b, “A Direct Distribution Model for Regional Aquatic Acidification”, Water Resour. Res. 22, 1749–1758.

    Google Scholar 

  22. Small, Mitchell J., Sutton, Michael C. and Milke, Mark, W.: 1988, “Parametric Distributions of Regional Lake Chemistry: Fitted and Derived”, Environ. Sci. Tech., Vol. 22,No. 2, 196–204.

    Google Scholar 

  23. Sullivan, T. J. and Cosby, B. J.: 1995a, “Testing, Improvement and Confirmation of a Watershed Model of Acid-Base Chemistry”, Water Air Soil Pollut. 85, 2607–2612.

    Google Scholar 

  24. Sullivan, T. J. and Cosby, B. J.: 1995b, “MAGIC Model Applications for Surface and Soil Waters as Input to the Tracking and Analysis Framework (TAF)”, Report No. DOE/ER/301967, Report prepared for The U.S. Department of Energy under Agreement No. DOEFG0292ER30196.

  25. Sullivan, T. J. and Cosby, B. J.: “Modelling the Concentration of Aluminium in Surface Waters”, Water Air Soil Pollut. (in press).

  26. Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Hemond, H. F., Charles, D. F., Norton, S. A., Seip, H. M. and Taugøl, G.: 1994, “Confirmation of the MAGIC Model Using Independent Data: Influence of Organic Acids in Model Estimates of Lakewater Acidification”, Report No. DOE/ER/301964, Final Report prepared for The U.S. Department of Energy under Agreement No. DOEFG0292ER30196.

  27. Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Charles, D. F. and Hemond, H. F.: 1996a, “Influence of Organic Acids on Model Projections of Lake Acidification”, Water Air Soil Pollut. 91, 271–282.

    Google Scholar 

  28. Sullivan, T. J., Eilers, J.M., Cosby, B. J. and Vaché, K. B.: 1996b, “Increasing Role of Nitrogen in the Acidification of Surface Waters in the Adirondack Miuntains, New York”,Water Air Soil Pollut. (in press).

  29. Thornton, K. W., Marmorek, D., Ryan, P. F., Heltcher, K. and Robinson, D.: 1990, “Methods for Projecting Future Changes in Surface Water Acid Base Chemistry”, NAPAO Report 14 in: NAPAP State of Science and Technology, Volume II, National Acid Precipitation Assessment Program. Washington, D.C.

  30. Wright, R. F., Cosby, B. J., Flaten, M. B. and Reuss, J. O.: 1990, “Evaluation of an Acidification Model with Data from Manipulated Catchments in Norway”, Nature 343, 53–55.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Sinha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinha, R., Small, M.J., Ryan, P.F. et al. Reduced-Form Modelling of Surface Water and Soil Chemistry for the Tracking and Analysis Framework. Water, Air, & Soil Pollution 105, 617–642 (1998). https://doi.org/10.1023/A:1004993425759

Download citation

  • acid deposition
  • Adirondacks
  • integrated assessment
  • lake acidification
  • mathematical model
  • reduced-form modelling
  • soil acidification