Skip to main content
Log in

ANALYSES OF VECTOR MAGNETOGRAMS IN FLARE-PRODUCTIVE ACTIVE REGIONS

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

This paper reviews studies of the relationship between the evolution of vector magnetic fields and the occurrence of major solar flares. Most of the data were obtained by the video magnetograph systems at Big Bear Solar Observatory (BBSO) and Huairou Solar Observatory (HSO). Due to the favorable weather and seeing conditions at both stations, high-resolution vector magnetograph sequences of many active regions that produced major flares during last solar maximum (1989–1993) have been recorded. We have analyzed several sequences of magnetograms to study the evolution of vector magnetic fields of flare productive active regions. The studies have focused on the following three aspects: (1) processes which build up magnetic shear in active regions; (2) the pre-flare magnetic structure of active regions; and (3) changes of magnetic shear immediately preceding and following major flares. We obtained the following results based on above studies: (1) Emerging flux regions (EFRs) play very important roles in the production of complicated photospheric flow patterns, magnetic shear and flares. (2) Although the majority of flares prefer to occur in magnetically sheared regions, many flares occurred in regions without strong photospheric magnetic shear. (3) We found that photospheric magnetic shear increased after all the 6 X-class flares studied by us. We want to emphasize that this discovery is not contradictory to the energy conservation principle, because a flare is a three-dimensional process, and the photosphere only provides a two-dimensional boundary condition. This argument is supported by the fact that if two initial ribbons of a flare are widely separated (which may correspond to a higher-altitude flare), the correlation of the flare with strong magnetic shear is weak; if the two ribbons of a flare are close (which may correspond to a lower-altitude flare), its correlation with the strong shear is strong. (4) We have analyzed 18 additional M-class flares observed by HSO in 1989 and 1990. No detectable shear change was found for all the cases. It is likely that only the most energetic flares can affect the photospheric magnetic topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai, G., Zhang, H., Li, W., Li, J., and Chen, J.: 1991, Chinese Sci. Bull. 36, 1275.

    Google Scholar 

  • Akasofu, S.I.: 1984, Planetary Space Sci. 32, 1469.

    Article  Google Scholar 

  • Ambastha, A., Hagyard, M. J., and West, E. A.: 1993, Solar Phys. 148, 277.

    Google Scholar 

  • Chen, J., Wang, H., Zirin, H., and Ai, G.: 1994, Solar Phys. 154, 261.

    Google Scholar 

  • Chou, D. and Wang, H.: 1987, Solar Phys. 110, 81.

    Google Scholar 

  • Forbes, T. G.: 1992, Proc. IAU Colloq. 141.

  • Gary, G. A., Hagyard, M. J., and West, E. A.: 1990, Solar Polarimetry, Proceedings of the Workshop on Solar Polarimetry, National Solar Observatory, Sacramento Peak, NM.

    Google Scholar 

  • Hagyard, M. J.: 1984, NASA TM-86469.

  • Hagyard, M. J.: 1987, Artificial Satellites 22, 69.

    Google Scholar 

  • Hagyard, M. J.: 1988, Solar Phys. 115, 107.

    Google Scholar 

  • Hagyard. M. J. and Rabin, D. M.: 198G, Adv. Space Res. 6, 7.

  • Hagyard, M. J., Moore, R. L., and Emslie, A. G.: 1984, Adv. Space Res. 4, 71.

    Google Scholar 

  • Hagyard, M. J., Venkatakrishnan, P., and Smith, J. B.: 1990, Astrophys. J. Suppl. 73, 159.

    Article  Google Scholar 

  • Hagyard, M. J., West, E. A., and Smith, J. E.: 1993, Solar Phys. 144, 141.

    Google Scholar 

  • Hagyard, M. J., Smith, J. B., Teuber, D., and West, E. A.: 1984, Solar Phys. 91, 115.

    Google Scholar 

  • Krall, K. R., Smith, J. B., Hagyard, M. J., West, E. A., and Cummings, N. P.: 1982, Solar Phys. 79, 59.

    Google Scholar 

  • Kurokawa, H.: 1987, Solar Phys. 113, 259.

    Google Scholar 

  • Lites, B. W. and Low, B. C.: 1997, Solar Phys., this issue.

  • Livi, S. H. B., Martin, S. F., Wang, H., and Ai, G.: 1989, Solar Phys. 121, 197.

    Article  Google Scholar 

  • Low, B. C.: 1977, Astrophys. J. 212, 234.

    Article  Google Scholar 

  • Low, B. C. and Nakagawa, Y.: 1975, Astrophys. J. 199, 237.

    Article  Google Scholar 

  • Machado, M. E. and Moore, R. L.: 1991, Proceedings of SCOSTEP International Solar-Terrestrial Physics Symposium, The Hague, The Netherlands.

  • Melrose, D. B.: 1995, Astrophys. J. 451, 391.

    Article  Google Scholar 

  • Moore, R. L., Hagyard, M. J., and Davis, J. M.: 1987, Solar Phys. 113, 347.

    Google Scholar 

  • Moore, R. L., Hurford, G. J., Jones, H. P., and Kane, S. R.: 1984, Astrophys. J. 276, 379.

    Article  Google Scholar 

  • Neidig, D. F.: 1979, Solar Phys. 61, 121.

    Google Scholar 

  • Sivarman K. R., Rausaria, R. R., and Aleem, S. M.: 1992, Solar Phys. 138, 353.

    Google Scholar 

  • Tanaka, K.: 1991, Solar Phys. 136, 133.

    Google Scholar 

  • Tang, F. and Wang, H.: 1993, Solar Phys. 143, 107.

    Google Scholar 

  • Wang, H.: 1990, Solar Polarimetry, Proceedings of the Workshop on Solar Polarimetry, National Solar Observatory, Sacramento Peak, NM.

    Google Scholar 

  • Wang, H.: 1992a, in K. Harvey (ed.), The Solar Cycle, Proceedings of the National Solar Observatory/ Sacramento Peak 12th Summer Workshop.

  • Wang, H.: 1992b, Solar Phys. 140, 85.

    Google Scholar 

  • Wang, H.: 1992c, Solar Phys. 140, 41.

    Google Scholar 

  • Wang, H. and Tang, F.: 1993, Astrophys. J. 407, L89.

    Article  Google Scholar 

  • Wang, H., Zirin, H., and Ai, G.: 1991, Solar Phys. 131, 53.

    Google Scholar 

  • Wang, H., Zirin, H., Patterson, A., Ai, G., and Zhang, H.: 1989, Astrophys. J. 343, 489.

    Article  Google Scholar 

  • Wang, H., Tang, F., Zirin, H., and Ai, G.: 1991, Astrophys. J. 380, 282.

    Article  Google Scholar 

  • Wang, H., Ewell, W., Zirin, H., and Ai, G.: 1994, Astrophys. J. 424, 436.

    Article  Google Scholar 

  • Wang, H., Gary, D. E., Zirin, H., Nitta, N., Schwartz, R. A., and Kosugi, T.: 1996, Astrophys. J. 456

  • Zirin, H.: 1992, in J. T. Schmelz and J. T. Brown (eds.), The Sun, A Laboratory for Astrophysics, Kluwer Academic Publishers, Dordrecht, Holland, p. 449.

    Google Scholar 

  • Zirin, H. and Tanaka, K.: 1973, Solar Phys. 32, 173.

    Google Scholar 

  • Zirin, H. and Wang, H.: 1989, Solar Phys. 119, 245.

    Google Scholar 

  • Zirin. H. and Wang, H.: 1990, Solar Phys. 125, 45.

    Google Scholar 

  • Zirin, H. and Wang, H.: 1993a, Solar Phys. 144, 37.

    Google Scholar 

  • Zirin, H. and Wang, H.: 1993b, Nature 363, 426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H. ANALYSES OF VECTOR MAGNETOGRAMS IN FLARE-PRODUCTIVE ACTIVE REGIONS. Solar Physics 174, 163–173 (1997). https://doi.org/10.1023/A:1004980917354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004980917354

Keywords

Navigation