Skip to main content
Log in

Solar Wind and Chromospheric Network

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A physical model of the transition region, including upflow of the plasma in magnetic field funnels that are open to the overlying corona, is presented. A numerical study of the effects of Alfvén waves on the heating and acceleration of the nascent solar wind originating in the chromospheric network is carried out within the framework of a two-fluid model for the plasma. It is shown that waves with reasonable amplitudes can, through their pressure gradient together with the thermal pressure gradient, cause a substantial initial acceleration of the wind (on scales of a few Mm) to locally supersonic flows in the rapidly expanding magnetic field ‘trunks’ of the transition region network. The concurrent proton heating is due to the energy supplied by cyclotron damping of the high-frequency Alfvén waves, which are assumed to be created through small-scale magnetic activity. The wave energy flux of the model is given as a condition at the upper chromosphere boundary, located above the thin layer where the first ionization of hydrogen takes place.

Among the new numerical results are the following: Alfvén waves with an assumed f -1 power spectrum in the frequency range from 1 to 4 Hz, and with an integrated mean amplitude ranging between 25 and 75 km s4, can produce very fast acceleration and also heating through wave dissipation. This can heat the lower corona to a temperature of 5× 105 K at a height of h=12,000 km, starting from 5× 104 K at h=3000 km. The resulting thermal and wave pressure gradients can accelerate the wind to speeds of up to 150 km s-1 at h=12,000 km, starting from 20 km s-1 at h=3000 km in a rapidly diverging flux tube. Thus the nascent solar wind becomes supersonic at heights well below the classical Parker-Type sonic point. This is a consequence of the fact that any large wave-energy flux, if it is to be conducted through the expanding funnel to the corona, implies the building-up of an associated wave-pressure gradient. Because of the diverging field geometry, this might lead to a strong initial acceleration of the flow. There is a multiplicity of solutions, depending mainly on the coronal pressure. Here we discuss two new (as compared with a static transition region model) possibilities, namely that either the flow remains supersonic or slows down abruptly by shock formation, which then yields substantial coronal heating up to the canonical 106 K for the proton temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axford, W. I. and McKenzie, J. F.: 1992, in E. Marsch and R. Schwenn (eds.), ‘The Origin of High Speed Solar Wind Streams’, Solar Wind Seven, Pergamon Press, Oxford, p. 1.

    Google Scholar 

  • Axford, W. I. and McKenzie, J. F.: 1995, in ‘The Solar Wind’, Cosmic Winds and the Heliosphere.

  • Bailyn, C., Rosner, R., and Tsinganos, K.: 1985, Astrophys. J. 296, 696.

    Google Scholar 

  • Barnes, A., Gazis, P. R., and Phillips, J. L.: 1995, Geophys. Res. Letters 22, 3309.

    Google Scholar 

  • Boris, J. P. and Book, D. J.: 1973, J. Comput. Phys. 11, 38.

    Google Scholar 

  • Dere, K. P.: 1989, Astrophys. J. 340, 599.

    Google Scholar 

  • Dowdy, J. F., Jr., Rabin, D., and Moore, R. L.: 1986, Solar Phys. 105, 35.

    Google Scholar 

  • Dowdy, J. F., Jr., Emslie, A. G., and Moore, R. L.: 1987, Solar Phys. 112, 255.

    Google Scholar 

  • Gabriel, A. H.: 1976a, Phil. Trans. Roy. Soc. London A281, 339.

    Google Scholar 

  • Gabriel, A. H.: 1976b, in R. Bonnet and P. Delache (eds.), ‘Structure of the Quiet Chromosphere and Corona, in “The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona”’, IAU Colloq. 36, 375.

  • Golstein, B. E., Smith, E. J., Balogh, A., Horbarry, T. S., Goldstein, M. L., and Roberts, D. A.: 1995, Geophys. Res. Letters 22, 3393.

    Google Scholar 

  • Guhathakurta, M. and Fisher, R. R.: 1995, Geophys. Res. Letters 22, 1841.

    Google Scholar 

  • Habbal, S. R., Esser, R., Guhathakurta, M., and Fisher, R.: 1995, Geophys. Res. Letters 22, 1465.

    Google Scholar 

  • Habbal, S. R. and Leer, E.: 1982, Astrophys. J. 253, 318.

    Google Scholar 

  • Habbal, S. R., Hu, Y. Q., and Esser, R.: 1994, J. Geophys. Res. 99, 8465.

    Google Scholar 

  • Hartle, R. E. and Sturrock, P. A.: 1968, Astrophys. J. 151, 1155.

    Google Scholar 

  • Hollweg, J. V.: 1986, J. Geophys. Res. 91, 4111.

    Google Scholar 

  • Klimchuk, J. A.: 1992, ‘Static and Dynamic Loop Models and Their Observational Signatures’, in Coronal Streamers, Coronal Loops, and Coronal and Solar Wind Composition, Proceedings of the First SOHO Workshop, ESA SP-348, p. 167.

  • Kopp, R. A. and Holzer, T. E.: 1976, Solar Phys. 49, 43.

    Google Scholar 

  • Leer, E. and Holzer, T. E.: 1980, J. Geophys. Res. 85, 4681.

    Google Scholar 

  • Leer, E. and Holzer, T. E.: 1990, Astrophys. J. 358, 680.

    Google Scholar 

  • Leer, E., Holzer, T. E., and Flå, T.: 1982, Space Sci. Rev. 33, 161.

    Google Scholar 

  • Mariska, J. T.: 1992, The Solar Transition Region, Cambridge University Press, Cambridge.

    Google Scholar 

  • Marsch, E.: 1994, Adv. Space Res. 14(4), 103.

    Google Scholar 

  • Marsch, E. and Richter, A. K.: 1984, J. Geophys. Res. 89, 6599.

    Google Scholar 

  • Marsch, E. and Tu, C. Y.: 1993, Ann. Geophys. 11, 659.

    Google Scholar 

  • Marsch, E. and Tu, C. Y.: 1997, Astron. Astrophys. 319, L17.

    Google Scholar 

  • Marsch, E., Goertz, C. K., and Richter, K.: 1982, J. Geophys. Res. 87, 5030.

    Google Scholar 

  • Marsch, E., von Steiger, R., and Bochsler, P.: 1995, Astron. Astrophys. 301, 261.

    Google Scholar 

  • Marsch, E., Mühlhäuser, K.-H., Schwenn, R., Rosenbauer, H., Pilipp, W. G., and Neubauer, F. M.: 1982, J. Geophys. Res. 87, 52.

    Google Scholar 

  • McComas, D. J., Barraclough, B. L., Gosling, J. T., Hammond, C.M., Phillips, J. L., Neugebauer, M., Balogh, A., and Forsyth, R. J.: 1995, J. Geophys. Res. 100, 19893.

    Google Scholar 

  • McKenzie, J. F., Banaszkiewicz, M., and Axford, W. I.: 1995, Astron. Astrophys. 303, L45.

    Google Scholar 

  • Parker, E. N.: 1958, Astrophys. J. 128, 664.

    Google Scholar 

  • Peter, H.: 1996, ‘Mehrflüssigkeitsmodelle der unteren Sonnenatmosphäre und Schlussfolgerungen für den Sonnenwind’, Ph.D. Thesis, University of Göttingen, Göttingen.

  • Rabin, D.: 1991, Astrophys. J. 383, 407.

    Google Scholar 

  • Thieme, K. M., Marsch, E., and Schwenn, R.: 1990, Ann. Geophys. 8(11), 713.

    Google Scholar 

  • Tu, C. Y.: 1987, Solar Phys. 109, 149.

    Google Scholar 

  • Tu, C. Y. and Marsch, E.: 1994, J. Geophys. Res. 99, 21481.

    Google Scholar 

  • Tu, C.-Y. and Marsch, E.: 1995, Space Sci. Rev. 73, 1.

    Google Scholar 

  • Tu, C.-Y. and Marsch, E.: 1997, Solar Phys. 171, 363.

    Google Scholar 

  • Wilhelm, K., Lemaire, P., Curdt, W., Schühle, U., Marsch, E., Poland, A. I., Jordan, S. D., Thomas, R. J., Hassler, D. M., Vial, J.-C., Kühne, M., Huber, M. J. C., Siegmund, O. H. W., Gabriel, A., Timothy, J. G., Grewing, G., Feldman, U., Hollandt, J., and Brekke, P.: 1997, Solar Phys. 170, 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsch, E., Tu, CY. Solar Wind and Chromospheric Network. Solar Physics 176, 87–106 (1997). https://doi.org/10.1023/A:1004975703854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004975703854

Keywords

Navigation