Skip to main content
Log in

Geometric Hyperplanes of Lie Incidence Geometries

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A geometric hyperplane of a point--line geometry is a proper subspace which meets each line non-trivially. If H is a hyperplane of a projective space P, and the point line geometry Γ has an embedding in P , then the pullback from H is a geometric hyperplane of Γ. We show that all geometric hyperplanes arise in this way for polar spaces of typeD n , the Grassmann space of lines, and the exceptional geometry E 1,6 . The actual geometric hyperplanes are studied in several cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, M.: The 27-dimensional module for E6: I, Invent. Math. 89 (1987), 159–195.

    Google Scholar 

  2. Behrends, R.E., Dreitlein, J., Fronsdal, C. and Lee, B.W.: Simple groups and strong interaction symmetries, Rev. Modern Phys. 34(1962), 1–40.

    Google Scholar 

  3. Blok, R. and Brouwer, A.: Spanning point-line geometries in buildings of spherical type (Preprint).

  4. Buekenhout, F.: Cooperstein's theory, Simon Stevin 57 (1983), 125–140.

    Google Scholar 

  5. Cohen, A.M.: Point-line characterizations of buildings, in L.A. Rosati (ed.) Buildings and the Geometry of Diagrams: Como 1984. Lecture Notes in Maths 1181, Springer, 1986, 191–206.

  6. Cohen, A.M. and Cooperstein, B.N.: The 2-spaces of the standard E6 (q)-module, Geom. Dedicata 25 (1988), 467–480.

    Google Scholar 

  7. Cohen, A.M. and Shult, E.E.: Affine polar spaces, Geom. Dedicata 35 (1990), 43–76.

    Google Scholar 

  8. Cooperstein, B.N.: A characterization of some Lie incidence structures, Geom. Dedicata 6 (1977), 205–258.

    Google Scholar 

  9. Cooperstein, B.N.: A four-form for half-spin groups of type D6 (Preprint).

  10. Cooperstein, B.N. and Shult, E.E.: Frames and bases of Lie incidence geometries (accepted by J. Geometry).

  11. Hall, J.I. and Shult, E.E.: Locally cotriangular graphs, Geom. Dedicata 18 (1985), 113–159.

    Google Scholar 

  12. Igusa, J.-I.: A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997–1028.

    Google Scholar 

  13. Ronan, M.: Embeddings and hyperplanes of discrete geometries. European J. Combin. 8 (1987), 179–185.

    Google Scholar 

  14. Shult, E.E.: Lie incidence geometries, in E. Keith Lloyd (ed.), Surveys in Combinatorics, London Math. Soc. Lecture Note Series 82, Cambridge University Press, 1983, pp. 157–184.

  15. Shult, E.E. and Yanushka, A.: Near n-gons and line systems, Geom. Dedicata 9 (1980) 1–72.

    Google Scholar 

  16. Veldkamp, F.D.: Polar geometry I-V, Proc. Kon. Ned. Akad. Wet. A62 (1959), 512–551; A63 (1960), 207–212 (= Indag. Math. 21, 22).

    Google Scholar 

  17. Wells, A.L. Jr.: Universal projective embeddings of the Grassmannian, half spinor and dual orthogonal geometries, Quart. J. Math. Oxford (2), 34 (1983), 375–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooperstein, B.N., Shult, E.E. Geometric Hyperplanes of Lie Incidence Geometries. Geometriae Dedicata 64, 17–40 (1997). https://doi.org/10.1023/A:1004969708687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004969708687

Navigation