Skip to main content
Log in

MAGNETIC RECONNECTION IN MULTIPLE HELIOSPHERIC CURRENT SHEETS

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Satellite observations of the heliospheric current sheet indicate that the internal structure of sector boundaries is a very complex structure with many directional discontinuities in the magnetic field. This implies that the heliospheric current sheet is not a single surface but a constantly changing layer with a varying number of current sheets. In this paper, we investigate magnetic reconnection caused by the resistive tearing mode instability in non-periodic multiple current sheets by using two-dimensional magnetohydrodynamic simulation. The results show that it is complex unsteady magnetic reconnection. Accompanying the nonlinear development of the tearing mode, the width of each magnetic island in multiple current sheets increases with time, and this leads to new magnetic reconnection. At the same time, the width of each current sheet increases, and the current intensity decreases gradually. Finally, the reverse current disappears, and a big magnetic island is formed in the central region. This process is faster when the separation between the current sheets is smaller. We suggest that the occurrence of multiple directional discontinuities observed at sector boundary crossings in the heliosphere may be associated with the magnetic islands and plasmoids caused by magnetic reconnection in multiple current sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behannon, K. W., Neubauer, F. M., and Barnstorf, H.: 1981, J. Geophys. Res. 86, 3273.

    Google Scholar 

  • Borrini, G., Gosling, J. T., Bame, S. J., Feldman, W. C., and Wilcox, J. M.: 1981, J. Geophys. Res. 86, 4565.

    Google Scholar 

  • Crooker, N. U., Siscoe, G. L., Shodhan, S., Webb, D. F., Gosling, J. T., and Srnith, E. J.: 1993, J. Geophys. Res. 98, 9371.

    Google Scholar 

  • Eddy, J. A.: 1973, Solar Phys. 30, 385.

    Google Scholar 

  • Eselevich, V. G. and Filippov, M. A.: 1988, Planetary Space Sci. 36, 105.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., Fenimore, E. E., and Gosling, J. T.: 1981, J. Geophys. Res. 86, 5408.

    Google Scholar 

  • Furth, H., Killeen, J., and Rosenbluth, M.: 1963, Phys. Fluids 6, 459.

    Google Scholar 

  • Gosling, J. T., Borrini, G., Asbridge, J. R., Bame, S. J., Feldman, W. C., and Hansen, R. T.:1981, J. Geophys. Res. 86, 5438.

    Google Scholar 

  • Gosling, J. T., Hildncr, E., Asbridge, J. R., Bame, S. J., and Feldman, W. C.: 1977, J. Geophys. Res. 82, 5005.

    Google Scholar 

  • Klein, L. and Burlaga, L. F.: 1980, J. Geophys. Res. 85, 2269.

    Google Scholar 

  • Lee, L. C. and Fu, Z. F.: 1986, J. Geophys. Res. 91, 3311.

    Google Scholar 

  • Lee, L. C. and Yan, M.: 1992, Phys. Fluids B4, 3808.

    Google Scholar 

  • Lee, L. C., Wang, S., Wei, C. Q., and Tsurutani, B. T.: 1988, J. Geophys. Res. 93, 7354.

    Google Scholar 

  • Matthaeus, W. H. and Lamkin, S. L.: 1985, Phys. Fluids 28, 303.

    Google Scholar 

  • Matthaeus, W. H. and Lamkin, S. L.: 1986, Phys. Fluids 29, 2513.

    Google Scholar 

  • Matthaeus, W. H. and Montgomery, D.: 1981, J. Plasma Phys. 25, 1981.

    Google Scholar 

  • Otto, A. and Birk, G. T.: 1992, Phys. Fluids B4, 3811.

    Google Scholar 

  • Priest, E. R.: 1985, Rep. Prog. Phys. 48, 955.

    Google Scholar 

  • Priest, E. R. and Forbes, T. G.: 1986, J. Gcophys. Res. 91, 5579.

    Google Scholar 

  • Priest, E. R. and Lee, L. C.: 1990, J. Plasma Phys. 44, 337.

    Google Scholar 

  • Pritchett, P. L., Lee, Y. C., and Drake, J. F.: 1980, Phys. Fluids 23, 1368.

    Google Scholar 

  • Rechester, A. B. and Stix, T. H.: 1976, Phys. Rev. Letters 36, 587.

    Google Scholar 

  • Rutherford, P. H.: 1973, Phys. Fluids 16, 1903.

    Google Scholar 

  • Scholer, M.: 1990, in C. T. Russell, E. R. Priest, and L. C. Lee (eds.), Physics of Magnetic Flux Ropes, Geophysics Monograph Series 58, AGU, Washington, D.C., p. 85.

    Google Scholar 

  • Stix, T. H.: 1976, Phys. Rev. Letters 36, 521.

    Google Scholar 

  • Villante, U. and Bruno, R.: 1982, J. Geophys. Res. 87, 607.

    Google Scholar 

  • Wang, S. and Zheng, H. N.: 1991, Chinese J. Geophys. 34, 525.

    Google Scholar 

  • Wang, S., Lee, L. C., and Wei, C. Q.: 1988, Phys. Fluids 31, 1544.

    Google Scholar 

  • Wang, S., Lee, L. C., Wei, C. Q., and Akasofu, S.-I.: 1988, Solar Phys. 117, 157.

    Google Scholar 

  • Webb, D. F. and Jackson, B. V.: 1990, J. Geophys. Res. 95, 20 641.

    Google Scholar 

  • White, R. B. and Monticello, D. A.: 1977, Phys. Fluids 20, 800.

    Google Scholar 

  • Yan, M., Otto, A., Muzzell, D., and Lee, L. C.: 1994, J. Geophys. Res. 99, 8657.

    Google Scholar 

  • Yu, Q. Q., Huo, Y. P., and Hu, X. W.: 1995, Sci. in China A25, 37 (Chinese version).

    Google Scholar 

  • Zhao, X. P., Wilcox, J. M., and Scherrer, P. H.: 1983, Chinese J. Space Sci. 3, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Liu, Y.F. & Zheng, H.N. MAGNETIC RECONNECTION IN MULTIPLE HELIOSPHERIC CURRENT SHEETS. Solar Physics 173, 409–426 (1997). https://doi.org/10.1023/A:1004959828537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004959828537

Keywords

Navigation