Skip to main content
Log in

Fast Plasma Processes in Active Galactic Nuclei

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The physics of active galactic nuclei (AGN) and related objects is one of the most actively pursued areas in astrophysics. Their large luminosities over the entire electromagnetic spectrum combined with extremely short-time variability has stimulated a large number of astrophysicists to propose rather unconventional ideas. After a simplistic review of the early work on AGN, a case is made for the important role of some of the nonlinear plasma processes in the generation of the nonthermal continuum as well as its interaction with the plasma surrounding the central source in the form of accretion disks and emission line regions. These plasma processes are fast, as they operate on characteristic time scales much shorter than the single particle processes do. Due to their collective nature. the efficiencies of scattering, absorption and emission increase many fold. In particular, it is shown how the parametric instabilities cause anomalous absorption and scattering and in turn heat the plasma to much higher temperatures than could be achieved through particle collisions. A combination of the stimulated Raman and Compton scattering processes is shown to be able to account for the major part of the spectrum of 3C273, as an example. An attempt is made to address simultaneously the questions of acceleration of particles and their radiation through the concerted action of a sequence of plasma processes. This review ends with some reflections on future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, M. F., Aller, H. D., and Hughes, P. A.: 1991, in J. Roland, H. Sol, and G. Pelletier (eds.), Flux And Polarization Variability: Constraints on AGN Modeling, Extragalactic Radio Sources - From Beams to Jets, 7th IAP Meeting, Cambridge University Press, Cambridge, p. 167.

    Google Scholar 

  • Antonucci, R.: 1993, ‘Unified Models for Active Galactic Nuclei and Quasars’, Ann. Rev. Astron. Astrophys. 31, 473.

    Google Scholar 

  • Barnothy, J. M.: 1965, ‘Quasars and the Gravitational Image Intensifier’, Astron. J. 70, 666.

    Google Scholar 

  • Barthel, P. D.: 1992, in W. J. Duschl and S. J. Wagner (eds.), Unified Schemes for Radio-Loud and Radio-Quiet QSO's, Physics of Active Galactic Nuclei, Springer-Verlag, Berlin, p. 637.

    Google Scholar 

  • Barvainis, R.: 1987, ‘Hot Dust and the Near-Infrared Bump in the Continuum Spectra of Quasars and Active Galactic Nuclei’, Astrophys. J. 320, 537.

    Google Scholar 

  • Barvainis, R.: 1993, ‘Free Emission and the Big Blue Bump. In Active Galactic Nuclei’, Astrophys. J. 412, 513.

    Google Scholar 

  • Belkov, S. A. and Tsytovich, V. N.: 1973, ‘Modulatin Excitation of Magnetic Fields’, Soviet Phys. JETP 49(4), 656.

    Google Scholar 

  • Belkov, S. A. and Tsytovich, V. N.: 1982, ‘Modulation Non-Linear Generation of the Magnetic Fields in Dense Plasma’, Phys. Scripta 25, 416.

    Google Scholar 

  • Blandford, R. D., Mckee, C. F., and Rees, M. J.: 1977, ‘Super-Luminal Expansion in Extragalactic Radio Sources’, Nature 267, 211.

    Google Scholar 

  • Blandford, R. D. and Konigl, A.: 1979, ‘Relativistic Jets as Compact Radio Sources’, Astrophys. J. 232, 34.

    Google Scholar 

  • Blandford, R. D. and Payne, P. G.: 1982, ‘Hydromagnetic Flows from Accretion Discs and the Production of Radio Jet’, Monthly Notices Roy. Astron. Soc. 199, 883.

    Google Scholar 

  • Bregman, J. N.: 1990, Astron. Astrophys. Rev. 2, 125.

    Google Scholar 

  • Bregman, J.N.: 1994, in T. J. L. Courvoisier and A. Blecha (eds.), ‘The Origin of Continuum Emission in Active Galactic Nuclei’, IAU Symp. 159, 5.

  • Chen, F. F.: 1974, Introduction To Plasma Physics, Plenum Press, London.

    Google Scholar 

  • Colgate, S. A.: 1994, ‘Acceleration in Astrophysics’, Phys. Scripta T52, 96.

    Google Scholar 

  • Coppi, R., Blandford, R. D., and Rees, M. J.: 1993. ‘Anisotropic Induced Compton Scattering - Constraints on Models of Active Galactic Nuclei’, Monthly Notices Roy. Astron. Soc. 262, 603.

    Google Scholar 

  • Cotton, W. D. et al.: 1984, ‘VLBI Observations of the Polarized Radio Emission from The Quasar 3C454.3’, Astrophys. J. 286, 503.

    Google Scholar 

  • Courvoisier, T. J. L. et al.: 1987, ‘The Radio to X-Ray Continuum Emission of the Quasar 3C273 and Its Temporal Variations’, Astron. Astrophys. 176, 209.

    Google Scholar 

  • Czerny, B.: 1994, in T. J. L. Courvoisier and A. Blecha (eds.), ‘Emission of Accretion Disks’, IAU Symp. 159, 261.

  • Daltabuit, E. and Cox, D. P.: 1972, ‘K Shell Photoionization Cross-Sections’, Astrophys. J. 177, 855.

    Google Scholar 

  • Daltabuit, E., MacAlpine, G. M., and Cox, D. P.: 1978, ‘The Structure and Spectrum of a Colliding Cloud System and Its Possible Relationship to QSOs’, Astrophys. J. 219, 372.

    Google Scholar 

  • Davidson, K.: 1972, ‘Photoionization and the Emission Line Spectra of Quasi-Stellar Objects’, Astrophys. J. 171, 213.

    Google Scholar 

  • Davidson, K. and Netzer, H.: 1979, ‘The Emission Lines of Quasars and Similar Objects’, Rev. Mod. Phys. 51, 715.

    Google Scholar 

  • Edelson, R. A. and Malkan, M. A.: 1986, ‘Spectral Energy Distributions of Active Galactic Nuclei Between 0.1 and 100 Microns’, Astrophys. J. 308, 59.

    Google Scholar 

  • Eilek, J. A. and Caroff, L.J.: 1976, ‘Cloud Acceleration by Cosmic Rays in the Vicinity of Compact Luminous Objects’, Astrophys. J. 208, 887.

    Google Scholar 

  • Figueroa, H. et al.: 1984, ‘Stimulated Raman Scattering, Two-Plasmon Decay and Hot Electron Generation from Underdense Plasma at 0.35 μm’, Phys. Fluids 27, 1887.

    Google Scholar 

  • Fried, D. and Conte, S. D.: 1961, ‘The Plasma Dispersion Function’, New York Academic, New York.

    Google Scholar 

  • Ginzburg, V. L. and Syrovatskii, S. I.: 1969, ‘Developments in the Theory of Synchrotron Radiation and Its Reabsorption’, Ann. Rev. Astron. Astrophys. 7, 375.

    Google Scholar 

  • Gangadhara, R. T. and Krishan, V.: 1990, ‘Radio Wave Heating of Astrophysical Plasmas’, J. Astrophys. Astron. 11, 515.

    Google Scholar 

  • Gangadhara, R. T. and Krishan, V.: 1992, ‘The Role of Compton and Raman Scattering in the Quasar Continuum’, Monthly Notices Roy. Astron. Soc. 256, 111.

    Google Scholar 

  • Gangadhara, R. T. and Krishan, V.: 1993 ‘Polarization Changes of Radiation Through Stimulated Raman Scattering’, Astrophys. J. 415, 505.

    Google Scholar 

  • Gangadhara, R. T. and Krishan, V.: 1995, ‘Rapid Polarization Variability in Intense Sources’, Astrophys. J. 440, 116.

    Google Scholar 

  • Gangadhara, R. T., Krishan, V., and Shukla, P. K.: 1993, ‘The Modulation of Radiation in an Electron-Positron Plasma’, Monthly Notices Roy. Astron. Soc. 262, 151.

    Google Scholar 

  • Harris, E. G.: 1975, ‘Introduction to Modern Theoretical Physics’, Vol. 2, Quantum Theory and Statistical Physics, Wiley-Interscience Publ., New York, p. 735.

    Google Scholar 

  • Hasegawa, A.: 1978, ‘Free Electron Laser’, Bell System Tech. J. 57, 3069.

    Google Scholar 

  • Hoyle, F., Burbidge, G. R., and Sargent, W. L.W.: 1966, ‘On the Nature of the Quasi-Stellar Sources’, Nature 209, 751.

    Google Scholar 

  • Hughes, P. A., Aller, H. D., and Aller, M. F.: 1985, ‘Polarized Radio Outburst in BL LACERTEA II: The Flux And Polarization of A Piston-Driven Shock’, Astrophys. J. 298, 301.

    Google Scholar 

  • Jones, T. W., O'Dell, S. L., and Stein, W. A.: 1974, ‘Physics of Compact Non-Thermal Sources II: Determination of Physical Parameters’, Astrophys. J. 192, 261.

    Google Scholar 

  • Kaw, P. K., Schmidt, G., and Wilcox, T.: 1973, ‘Filamentation and Trapping of Electromagnetic Radiation in Plasmas’, Phys. Fluids 16, 1522.

    Google Scholar 

  • Kniffen, D. A. et al.: ‘Time Variabality in the Gamma-Ray Emission of 3C279’, Astrophys. J. 411, 133.

  • Kono, M., Skoric, M. M., and ter Haar, D.: 1981, ‘Spontaneous Excitation of Magnetic Fields and Collapse Dynamics in a Langmuir Plasma’, J. Plasma Phys. 26, 123.

    Google Scholar 

  • Krishan, V.: 1978, ‘Conductivity of an Ion-Acoustically Turbulent Plasma’, Solar Phys. 59, 29.

    Google Scholar 

  • Krishan, V.: 1983, ‘Emission Mechanism of Extragalactic X-ray and Radio Sources’, Astrophys. Lett. 23, 133.

    Google Scholar 

  • Krishan, V.: 1985, ‘Acceleration and Radiation Processes Around Active Galactic Nuclei’, Astrophys. Space Sci. 115, 119.

    Google Scholar 

  • Krishan, V.: 1987, ‘Anomalous Heating of Quasar Emission - Line Regions’, Monthly Notices Roy. Astron. Soc. 226, 629.

    Google Scholar 

  • Krishan, V.: 1988a, ‘Is 21-cm Absorption Associated with the Emission-Line Regions of Quasars’, Monthly Notices Roy. Astron. Soc. 231, 357.

    Google Scholar 

  • Krishan, V.: 1988b, ‘Scattering of Quasar Radiation in the Intercloud Medium’, Monthly Notices Roy. Astron. Soc. 234, 79.

    Google Scholar 

  • Krishan, V.: 1988c, ‘Raman Scattering of the Synchrotron Self-Absorbed Radiation in Accretion Discs’, Monthly Notices Roy. Astron. Soc. 230, 183.

    Google Scholar 

  • Krishan, V.: 1988d, ‘One More Explanation of Superluminal Motion’, J. Astrophys. Astron. 9, 231.

    Google Scholar 

  • Krishan, V.: 1993, ‘The Extraterrestrial Raman Scattering’, Current Sci. 64, 301.

    Google Scholar 

  • Krishan, V.: 1994, ‘Role of Plasma Processes in Astrophysics’, Phys. Scripta T52, 118.

    Google Scholar 

  • Krishan, V. and Wiita, P. J.: 1990, ‘Coherent Plasma Processes and the Continuum Emission in Active Galactic Nuclei’, Monthly Notices Roy. Astron. Soc. 246, 597.

    Google Scholar 

  • Krishan, V. and Wiita, P. J.: 1994, ‘Plasma Mechanisms for Variability in Active Galactic Nuclei’, Astrophys. J. 423, 172.

    Google Scholar 

  • Krolik, J. H., McKee, C. F., and Tarter, C. B.: 1978, in A. Wolfe (ed.), Proc. Pittsburgh Conference on BL Lacertae Objects, University of Pittsburgh, Pittsburgh, p. 277.

    Google Scholar 

  • Krolik, J. H., McKee, C. F., and Tarter, C. B.: 1981, ‘Quasar Emission Line Regions’, Astrophys. J. 249, 492.

    Google Scholar 

  • Kruer, L. W.: 1988, The Physics of Laser Plasma Interactions, Addison-Wesley Publ. Co. Inc., New York.

    Google Scholar 

  • Lesch, H. and Pohl, M.: 1992, ‘A Possible Explanation for Intraday Variability in Active Galactic Nuclei, Magnetic Reconnection And Coherent Plasma Emission’, Astron. Astrophys. 254, 29.

    Google Scholar 

  • Lesch, H. and Schlickeiser, R.: 1987, ‘Stabilization and Consequences of Relativistic Electron Bumps in Extragalactic Radio Sources’, Astron. Astrophys. 179, 93.

    Google Scholar 

  • Levich, E. V. and Sunyaev, R. A.: 1971, ‘Heating of Gas near Quasars, Seyfert-Galaxy Nuclei and Pulsars by Low-Frequency Radiation’, Soviet Astron. 15, 363.

    Google Scholar 

  • Levinson, A. and Blandford, R.: 1995, ‘Raman Scattering in High-Radio-Brightness Astrophysical Systems: Application to Active Galactic Nuclei’, Monthly Notices Roy. Astron. Soc. 274, 717.

    Google Scholar 

  • Lightman, A. P.: 1982, ‘Relativistic Thermal Plasma: Pair Processes and Equilibria’, Astrophys. J. 253, 849.

    Google Scholar 

  • Liu, C. S. and Kaw, P.: 1976, ‘Parametric Instabilities in Homogeneous Unmagnetized Plasmas’, Adv. Plasma Phys. 6, 83.

    Google Scholar 

  • Malkan, M. A.: 1991, in C. Bertout, S. Collin, J. P. Lasota, and J. Tran Thanh Van (eds.), ‘Accretion Disk Models for Active Galactic Nuclei’, Structure and Emission Properties of Accretion Disks, Ed. Frontiers, Gif-sur-Yvette, p. 165.

  • Malkan, M. A.: 1992, in W. J. Duschl and S. J. Wagner (eds.), ‘Examining Alternatives to Accretion Disk Models for the AGN Continuum’, Physics of Active Galactic Nuclei, Springer-Verlag, Berlin, p. 109.

    Google Scholar 

  • Mannheim, K.: 1994, T. J. L. Courvoisier and A. Blecha (eds.), On the Difference Between Radio Loud and Radio Quiet AGN, Multiwavelength Continuum Emission of AGN, Kluwer Academic Publishers, Dordrecht, p. 285.

    Google Scholar 

  • Marscher, A. P. and Bloom, S. D.: 1992, Compton Observatory Science Workshop, p. 346.

  • McCray, R.: 1979, in C. Hazard and S. Mitton (eds.), ‘Spherical Accretion onto Supermassive Black Holes’, Active Galactic Nuclei, Proceedings of a Nato Study Institute held at the Institute of Astronomy, University of Cambridge, Cambridge, p. 227.

    Google Scholar 

  • Mathews, W. G. and Captiotti, E. R.: 1985, in J. S. Miller (ed.), ‘Structure and Dynamics of the Broad Line Regions’, Astrophysics of Active Galaxies and Quasi-Stellar Objects, University Science Books, Mill Valley, p. 185.

    Google Scholar 

  • Miller, H. R. and Wiita, P. J. (eds.): 1991, Variability of Active Galactic Nuclei, Cambrige University Press, Cambridge.

    Google Scholar 

  • Mushotzky, R. F., Done, C., and Pounds, K. A.: 1993, ‘X-Ray Spectra and Time Variability of Active Galactic Nuclei’, Ann. Rev. Astron. Astrophys. 31, 13.

    Google Scholar 

  • Novikov, I. and Thorne, K. S.: 1973, in C. Dewitt and B. Dewitt (eds.), ‘Black Hole Astrophysics’ Black Holes, Gordon and Breach, New York, p. 343.

    Google Scholar 

  • Nussbaumer, H. and Osterbrock, D. E.: 1970, ‘On the Forbidden Emission Lines of Iron in Seyfert Galaxies’, Astrophys. J. 161, 811.

    Google Scholar 

  • Osterbrock, D. E. and Mathews, W. G.: 1986, ‘X-Ray Spectra and Time Variability of Active Galactic Nuclei’, Ann. Rev. Astron. Astrophys. 31, 717.

    Google Scholar 

  • Osterbrock, D. E. and Parker, R. A. R.: 1965, ‘Physical Conditions in the Nucleus of the Seyfert Galaxy NGC 1068’, Astrophys. J. 141, 892.

    Google Scholar 

  • Pacholczyk, A. G.: 1970, Radio Astrophysics, Freeman, San Francisco.

    Google Scholar 

  • Pacini, F. and Salvati, F.: 1982, in D. S. Heeschen and C. M. Wade (eds.), ‘The Nature of the Energy Source in Radio Galaxies and Active Galactic Nuclei, Extragalactic Radio Sources’, IAU Symp. 97, 247.

  • Phinney, E. S.: 1985, J. S. Miller (ed.), ‘Central Radio Sources’, Astrophysics of Active Galaxies and Quasi-Stellar Objects, Oxford University Press, Oxford, p. 453.

    Google Scholar 

  • Rees, M. J.: 1966 ‘Appearance of Relativistically Expanding Radio Sources’, Nature, 211, 468.

    Google Scholar 

  • Rees, M. J.: 1977, ‘Quasar Theories’, Ann. N.Y. Acad. Sci. 302, 613.

    Google Scholar 

  • Rees, M. J.: 1984, ‘Black Hole Models for Active Galactic Nuclei’, Ann. Rev. Astron. Astrophys. 22, 471.

    Google Scholar 

  • Rees, M. J. et al.: 1969, ‘Infrared Radiation from Dust in Seyfert Galaxies’, Nature 223, 788.

    Google Scholar 

  • Rieke, G. H.: 1978, ‘The Infrared Emission of Seyfert Galaxies’, Astrophys. J. 226, 550.

    Google Scholar 

  • Robson, E. I. et al.: 1986, ‘A New Infrared Spectral Component of the Quasar 3C273’, Nature 323, 134.

    Google Scholar 

  • Rybicki, G. B. and Lightman, A. P.: 1979, Radiative Processes in Astrophysics, Wiley-Interscience Publication, New York.

    Google Scholar 

  • Scheuer, P. A. G.: 1984, in R. Fanti, K. Kellermann and G. Setti (eds.), ‘Explanations of Superluminal Motion’, IAU Symp. 110, 197.

  • Scheuer, P. A. G.: 1995, ‘Lobe Asymmetry and the Expansion Speeds of Radio Sources’, Monthly Notices Roy. Astron. Soc. 277, 331.

    Google Scholar 

  • Shields, G. A.: 1978, ‘Thermal Continuum from Accretion Disks in Quasars’, Nature 272, 706.

    Google Scholar 

  • Sillanpaa, A., Nilsson, K., and Takalo, L. O.: 1991, in J. Roland, H. Sol, and G. Pelletier (eds.),’ Rapid 55 Degree Swing in the Position Angle of the Polarization in OJ 287: A Flare in the Accretion Disk?’, Extragalactic Radio Sources - From Beams to Jets, 7th IAP Meeting, Cambridge University Press, Cambridge, p. 174.

    Google Scholar 

  • Spangler, S. R.: 1982, in D. S. Heeschen and C. M. Wade (eds.), ‘Spectral Shapes of Compact Extragalactic Radio Sources’, Extragalactic Radio Sources, D. Reidel Publ. Co., Dordrecht, Holland, p. 297.

    Google Scholar 

  • Stein, W. A. and O'Dell, S. A.: 1985, in J. S. Miller (ed.), ‘The Radio to X-Ray Continuua of AGN’, Astrophysics of Active Galaxies and Quasi-Stellar Objects, Oxford University Press, Oxford, p. 381.

    Google Scholar 

  • Stockman, H. S.: 1978, in A-.M. Wolfe (ed.), ‘A Report on the Liner Polarization Survey’ Pittsburgh Conference on BL Lac Objects, University of Pittsburgh, Pittsburgh, p. 149.

    Google Scholar 

  • Svensson, R.: 1982, ‘Electron-Positron Pair Equilibria in Relativistic Plasmas’, Astrophys. J. 258, 335.

    Google Scholar 

  • Svensson, R.: 1984, ‘Steady Mildly Relativistic Thermal Plasma: Processes and Properties’, Monthly Notices Roy. Astron. Soc. 209, 175.

    Google Scholar 

  • Tamor, S.: 1973, ‘Effect of Partial Coherence on Laser-Driven Plasma Instabilities’, Phys. Fluids 16, 1169.

    Google Scholar 

  • Thomson, J. J. et al.: 1974, ‘Parametric Instability Thresholds and Their Control’, Phys. Fluids 17, 849.

    Google Scholar 

  • Urry, C. M. and Padovani, P.: 1995, Publ. Astron. Soc. Pacific 107, 803.

    Google Scholar 

  • Valtaoja, E. and Valtonen, M.: 1992, Variability of Blazars, Cambridge University Press, Cambridge.

    Google Scholar 

  • Weatherall, J. C. and Benford, G.: 1991, ‘Coherent Radiation from Energetic Electron Streams via Collisionless Bremsstrahlung in Strong Plasma Turbulence’, Astrophys. J. 378, 543.

    Google Scholar 

  • Weymann, R. J., Carswell, R. F., and Smith, M. G.: 1981, ‘Absorption Lines in the Spectra of Quasistellar Objects’, Ann. Rev. Astron. Astrophys. 19, 41.

    Google Scholar 

  • Wiita, P. J., Kapahi, V. K., and Saikia, D. J.: 1982, ‘Relativistic Beams, Thick Accretion Disks and Active Galactic Nuclei’, Bull. Astron. Soc. India 10, 310.

    Google Scholar 

  • Wilson, D. B.: 1982, ‘Induced Comption Scattering in Radiative Transfer’, Monthly Notices Roy. Astron. Soc. 200, 881.

    Google Scholar 

  • Wilson, A. S. and Colbert, E. J. M.: 1995, ‘The Difference Between Radio-Loud and Radio-Quiet Active Galaxies’, Astrophys. J. 438, 62.

    Google Scholar 

  • Zakharov, V. E.: 1972, ‘Collapse of Langmuir Waves’, Soviet Phys. - JETP 35, 908.

    Google Scholar 

  • Zdziarski, A. A. et al.: 1990, ‘Electron-Positron Pairs, Compton Reflection and the X-Ray Spectra of Active Galactic Nuclei’, Astrophys. J. 363, L1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishan, V. Fast Plasma Processes in Active Galactic Nuclei. Space Science Reviews 80, 445–494 (1997). https://doi.org/10.1023/A:1004922327108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004922327108

Keywords

Navigation