Skip to main content
Log in

Anion Adsorption and Desorption Characteristics of a Piedmont Ultisol: Some Implications for the Fate of Sulfate Deposition

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Batch-type experiments were used to determine the anion (fluoride, nitrate, sulfate, and phosphate) adsorption and desorption characteristics of an Ultisol from the Piedmont Province of Georgia. The results were best described using ‘initial mass’ isotherms when the initial anion concentration was less than two meq l-1. The Langmuir adsorption maximum for sulfate (initial concentration range of 0.2–20 meq l-1) was 24.4 meq kg-1. Oxalate, acetate, nitrate, fluoride, and phosphate were used as exchangeable ‘counter’ anions to investigate the sulfate retention characteristics of this soil. High concentrations (> one meq l-1) of oxalate, phosphate and fluoride were shown to release sulfate from this soil. However, little sulfate desorption resulted when lower and more environmentally realistic concentrations of competing anions were applied. Application of oxalate revealed that a minimum of 19 meq kg-1 of sulfate has been adsorbed on this soil through natural processes. The Langmuir adsorption maximum suggests that this Ultisol, typical of many B horizons within this region, has a large capacity to adsorb additional inputs of atmospheric sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM: 1990, Standard Test Method for Particle Size Analysis of Soils, American Society of Testing Materials, D422- 63.

  • Aylmore, L. A. G., Karim, M. and Quirk, J. P.: 1967, Soil Sci. 103, 10.

    Google Scholar 

  • Barrow, N. J. and Shaw, T. C.: 1977, Soil Sci. 124, 265.

    Google Scholar 

  • Binkley, D., Driscoll, C. T., Allen, H. L., Schoenebereger, P. and McAvoy, D.: 1989, Acid Deposition and Forest Soils, Springer-Verlag, New York, p. 149.

    Google Scholar 

  • Chou, T. T., Howard, M. E. and Fang, S. C.: 1962, Soil. Sci. Soc. Am. Proc. 26, 234.

    Google Scholar 

  • Cleaves, E. T., Godfrey, A. E. and Bricker, O. P.: 1970, Geol. Soc. Am. J. 81, 3015.

    Google Scholar 

  • Cosby, B. J., Hornberger, G.M, Wright, R. F. and Galloway, J. N.: 1986, Water Resour. Res. 22, 1283.

    Google Scholar 

  • Courchesne, F. and Landy, R.: 1994, Soil Sci. 158, 329.

    Google Scholar 

  • Drever, J. I.: 1988, The Geochemistry of Natural Waters, Prentice Hall, Englewood Cliffs, p. 437.

    Google Scholar 

  • Huntington, T. G., Hooper, R. P. and Aulenbach, B. T.: 1994, Water Resour. Res. 30, 283.

    Google Scholar 

  • Johnson, D. W., Henderson, G. S. and Todd, D. E.: 1981, Soil Sci. 132, 422.

    Google Scholar 

  • Kunze, G. W.: 1965, ‘Pretreatment for Mineralogical Analysis’, in: Methods of Soil Analysis, American Society of Agronomy, Madison, pp. 568-577.

    Google Scholar 

  • Li, F.: 1995, Unpublished M.S. Thesis, Georgia State University, Atlanta, Georgia. p. 136.

  • Moore, D. M. and Reynolds, R. C.: 1989, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, Oxford, p, 332.

    Google Scholar 

  • Nodvin, S. C., Driscoll, C. T. and Likens, G. E.: 1986, Soil Sci. 142, 27.

    Google Scholar 

  • Parfitt, R. L.: 1978, in: Advances in Agronomy, Vol. 30, Academic Press, Inc., New York, p. 50.

    Google Scholar 

  • Parfitt, R. L. and Smart, R. S. C.: 1978, Soil. Sci. Soc. Am. J. 42, 39.

    Google Scholar 

  • Peters, N. E. and Bonelli, J. E.: 1982, ‘Chemical Composition of Bulk Precipitation in the North-Central and Northeastern United States, December 1980 Through February 1981’, Geological Survey Circular 874, U.S. Geological Survey, p. 61.

  • Rao, S. M. and Sridharan, A.: 1984, Clays and Clay Miner. 32, 414.

    Google Scholar 

  • Reuss, J. O. and Johnson, D.W.: 1986, Acid Deposition and the Acidification of Soil Waters, Springer-Verlag, New York, p. 119.

    Google Scholar 

  • Reuss, J. O., Cosby, B. J. and Wright, R. F.: 1987, Nature 329, 27.

    Google Scholar 

  • Rochelle, B. P., Church, M. R. and David, M. B.: 1987, Water, Air, and Soil Pollut. 33, 73.

    Google Scholar 

  • Rose, S.: 1994, Hydrol. Process. 8, 481.

    Google Scholar 

  • Roy, W. R., Krapac, I. G., Chou, S. F. J. and Griffin, R. A.: 1991, Batch-type procedures for estimating soil adsorption of chemicals, EPA Technical Resource Document, EPA/530SW87006F, 100 pp.

  • Shanley, J. B.: 1992, Soil Sci. 153, 499.

    Google Scholar 

  • Shanley, J. B. and Peters, N. E.: 1993, J. Hydrol. 146, 361.

    Google Scholar 

  • Singh, B. R.: 1984, Soil Sci. 138, 189.

    Google Scholar 

  • Sposito, G.: 1984, The Surface Chemistry of Soils, Oxford University Press, New York, p. 234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, S. Anion Adsorption and Desorption Characteristics of a Piedmont Ultisol: Some Implications for the Fate of Sulfate Deposition. Water, Air, & Soil Pollution 101, 333–347 (1998). https://doi.org/10.1023/A:1004916724390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004916724390

Navigation