Skip to main content
Log in

Tissus linéaires et théorèmes d'algébrisation de type Abdel-inverse et Reiss-inverse

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A d-web in (\(\mathbb{C}^n \),0) is given by d complex analytic foliations of codimension one in (\(\mathbb{C}^n \),0) which are in general position. A d-web \(\mathcal{L}(d)\) in (\(\mathbb{C}^n \),0) is linear if all the leaves are (pieces of) hyperplanes in \(\mathbb{C}^n \) and \(\mathcal{L}(d)\) is algebraic if it is associated, by duality, to a nondegenerate algebraic curve Г in \(\mathbb{P}^n \) of degree d. We characterize linear webs in (\(\mathbb{C}^n \),0). We give explicit conditions under which a linear d-web in (\(\mathbb{C}^n \),0) is algebraic and we obtain equations for \(\Gamma \subset \mathbb{P}^n \) in this case. Some related problems are discussed and some questions are posed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  1. Akivis, M. A. and Goldberg, V. V.: Projective Differential Geometry of Submanifolds, North-Holland, Amsterdam, 1993.

    Google Scholar 

  2. Barlet, D.: Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, in F. Norguet (ed.), Fonctions de plusieurs variables complexes II, Lecture Notes in Math. 482, Springer-Verlag, Berlin, 1975, pp. 1–158.

    Google Scholar 

  3. Blaschke, W. und Bol, G.: Geometrie der Gewebe, Springer, Berlin, 1938.

    Google Scholar 

  4. Castelnuovo, G.: Ricerche di Geometria sulle curve algebriche, Atti R. Accad. Sci. Torino 24 (1889), 346–373.

    Google Scholar 

  5. Chern, S. S.: Abzählungen für Gewebe, Abh. Hamburg 11 (1936), 163–170.

    Google Scholar 

  6. Chern, S. S.: Web Geometry, Bull. Amer. Math. Soc. 6 (1982), 1–8.

  7. Goldberg, V. V.: Theory of Multicodimensional (n+1)-Webs, Kluwer, Dordrecht, 1988.

    Google Scholar 

  8. Griffiths, P. A.: Variations on a Theorem of Abel, Invent. Math. 35 (1976), 321–390.

    Google Scholar 

  9. Griffiths, P. A.: On Abel's differential equations, in: J.-I. Igusa (ed.), Algebraic Geometry, Johns Hopkins Centennial Lectures (1977), 26–51.

  10. Griffiths, P. A. and Harris, J.: Principles of Algebraic Geometry, Wiley, New-York, 1978.

    Google Scholar 

  11. Hénaut, A.: Caractérisation des tissus de ℂ2 dont le rang est maximal et qui sont linéarisables, Compositio Math. 94 (1994), 247–268.

    Google Scholar 

  12. Hénaut, A.: Introduction à la géométrie des tissues, Publication de l'Ecole Doctorale de Mathématiques de Bordeaux, 1994.

  13. Hénaut, A.: Systèmes différentiels, nombre de Castelnuovo et rang des tissus de ℂn, à paraître dans Publ. R.I.M.S., Kyoto Univ.

  14. Henkin, G. M.: The Abel-Randon transform and several complex variables, Prépublication Université Paris VI, 1993.

  15. Little, J.: Translation manifolds and the converse of Abel's theorem, Compositio Math. 49 (1983), 147–171.

    Google Scholar 

  16. Segre, B.: Sui teoremi di Bézout, Jacobi e Reiss, Ann. Mat. Pura Appl. 26 (1947), 1–26.

    Google Scholar 

  17. Wood, J. A.: A simple criterion for local hypersurfaces to be algebraic, Duke Math. J. 51 (1984), 235–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HÉNAUT, A. Tissus linéaires et théorèmes d'algébrisation de type Abdel-inverse et Reiss-inverse. Geometriae Dedicata 65, 89–101 (1997). https://doi.org/10.1023/A:1004916502107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004916502107

Navigation