Skip to main content
Log in

A SOLAR α - ω DYNAMO STUDY AND ITS TRANSITION TO CHAOS

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this contribution we present a nonlinear dynamo model, described by an infinite dimensional system of differential equations, whose solutions depend on the essential parameter D, the dynamo number. The solutions and the bifurcation points of the system are determined with the help of a new developed computer code. We show that, depending on D, stationary, oscillatory and chaotic solutions, which are characterized by Lyapunov exponents, result. We find that the solar dynamo may operate either in the chaotic or in the stable limit cycle domain, depending on the characteristic value of the dynamo number or the motion of the convection zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benettin, G., Calgani, L., and Streclyn, J. M.: 1976, Phys. Rev. A14, 2338.

    Article  Google Scholar 

  • Curry, J. H.: 1979, in Z. Nitecki and C. Robinson (eds.), Global Theory of Dynamical Systems, Springer Lecture Notes in Mathematics 819, 111.

  • Curry, J. H. and Yorke, J. A.: 1977, in A. Dold and B. Eckmann (eds.), The Structure of Attractors in Dynamical Systems, Springer Notes in Mathematics 668, 48.

  • Grassmugg, M.: 1995, Dissertation, Technical University Graz, Austria.

  • Guckenheimer, J. and Holmes, P.: 1990, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, Berlin.

    Google Scholar 

  • Ioos, G. and Joseph, D. D.: 1980, Elementary Stability and Bifurcation Theory, Springer-Verlag, Berlin.

    Google Scholar 

  • Krause, F. and Rädler, K. H.: 1980, Mean Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford.

    Google Scholar 

  • Kubicek, M. and Marek, M.: 1983, Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, Berlin.

    Google Scholar 

  • Leven, R. W., Koch, B. P., and Pompe, B.: 1994, Chaos in Dissipativen Systemen, Akademie Verlag, Berlin.

    Google Scholar 

  • Marsden, J. E. and McCracken, M.: 1976, The Hopf-Bifurcation and its Applications, Springer-Verlag, Berlin.

    Google Scholar 

  • Moreno-Insertis, F., Schüssler, M., and Ferriz-Mas: 1992, Astron. Astrophys. 264, 686.

    Google Scholar 

  • Parker, E. N.: 1955, Astrophys. J. 122, 293.

    Google Scholar 

  • Ruelle, D. and Takens F.: 1971, Comm. Math. Phys. 20, 167.

    Google Scholar 

  • Schmalz, S.: 1989, Dissertation, University of Freiburg.

  • Schmalz, S. and Stix, M.: 1991, Astron. Astrophys. 245, 654.

    Google Scholar 

  • Shimada, I. and Nagashima, T.: 1979, A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems; Prog. Theor. Phys. 61, 1605.

    Google Scholar 

  • Sparrow, C.: 1982, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, Berlin.

    Google Scholar 

  • Steenbeck, M., Krause, F., and Rädler, K. H.: 1966, Z. Naturforsch. 21a, 369.

    Google Scholar 

  • Stix, M.: 1976, Astron. Astrophys. 47, 243.

    Google Scholar 

  • Stix, M.: 1981, Solar Phys. 74, 79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassmugg, M., Hanslmeier, A. & Laback, O. A SOLAR α - ω DYNAMO STUDY AND ITS TRANSITION TO CHAOS. Solar Physics 174, 437–441 (1997). https://doi.org/10.1023/A:1004905811468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004905811468

Keywords

Navigation