Skip to main content
Log in

Hydration of Nafion® studied by AFM and X-ray scattering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nafion® is a commercially available perfluorosulphonate cation exchange membrane commonly used as a perm-selective separator in chlor-alkali electrolysers and as the electrolyte in solid polymer fuel cells. This usage arises because of its high mechanical, thermal and chemical stability coupled with its high conductivity and ionic selectivity, which depend strongly on the water content. The membrane was therefore studied in different states of hydration with two complementary techniques: atomic force microscopy (AFM) and small angle X-ray scattering (SAXS) combined with a maximum entropy (MaxEnt) reconstruction. Tapping mode phase imaging was successfully used to identify the hydrophobic and hydrophilic regions of Nafion. The images support the MaxEnt interpretation of a cluster model of ionic aggregation, with spacings between individual clusters ranging from 3 to 5 nm, aggregating to form cluster agglomerates with sizes from 5 to 30 nm. Both techniques indicate that the number density of ionic clusters changes as a function of water content, and this explains why the bulk volumetric swelling in water is observed to be significantly less than the swelling inferred from scattering measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Yeager and A. Steck, Journal of the Electrochemical Society 128 (1981) 1880.

    Google Scholar 

  2. H. L. Yeager, B. O'dell and Z. Twardowski, ibid. 129 (1982) 85.

    Google Scholar 

  3. M. R. Tant, K. A. Mauritz and G. L. Wilkes, “Ionomers: Synthesis, Structure, Properties and Applications” (Chapman & Hall, London, 1997).

    Google Scholar 

  4. T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio and S. Gottesfeld, Journal of the Electrochemical Society 140(7) (1993) 1981.

    Google Scholar 

  5. A. Eisenberg and H. L. Yeager, “Perfluorinated Ionomer Membranes” (ACS Books, Washington, 1982).

    Google Scholar 

  6. T. D. Gierke, G. E. Munn and F. C. Wilson, Journal of Polymer Science Part B-Polymer Physics 19(11) (1981) 1687.

    Google Scholar 

  7. E. J. Roche, M. Pineri, R. Duplessix and A. M. Levelut, ibid. 19(1) (1981) 1.

    Google Scholar 

  8. M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules 14(5) (1981) 1309.

    Google Scholar 

  9. T. HASHIMOTO and H. KAWAI Idem.},ibid. 15(1) (1982) 136.

    Google Scholar 

  10. C. L. Marx, D. F. Caulfield and S. L. Cooper, ibid. 6 (1973) 344.

    Google Scholar 

  11. E. J. Roche, R. S. Stein, T. P. Russell and W. J. Macknight, Journal of Polymer Science Part B-Polymer Physics. 18 (1980) 1497.

    Google Scholar 

  12. W. J. Macknight, W. P. Taggart and R. S. Stein, Journal of Polymer Science Symposium C 45 (1974) 113.

    Google Scholar 

  13. J. Kao, R. S. Stein, T. P. Russell, W. J. Macknight and G. S. Cargill, Macromolecules 7 (1974) 95.

    Google Scholar 

  14. S. Rieberer and K. H. Norian, Ultramicroscopy 41 (1982) 225.

    Google Scholar 

  15. Z. Porat, J. R. Fryer, M. Huxham and I. Rubinstein, Journal of Physical Chemistry 99 (1995) 4667.

    Google Scholar 

  16. W. Y. Hsu and T. D. Gierke, Journal of Membrane Science 13(3) (1983) 307.

    Google Scholar 

  17. H. S. Sodaye, P. K. Pujari, A. Goswami and S. B. Manohar, Journal of Polymer Science Part B-Polymer Physics 36(6) (1998) 983.

    Google Scholar 

  18. P. K. PUJARI, A. GOSWAMI and S. B. MANOHAR Idem.},ibid. 35(5) (1997) 771.

    Google Scholar 

  19. G. Dlubek, R. Buchhold, C. Hubner and A. Nakladal, Macromolecules 32(7) (1999) 2348.

    Google Scholar 

  20. M. Chomakova-Haefke, R. Nyffenegger and E. Schmidt, Applied Physics A 59 (1994) 151.

    Google Scholar 

  21. A. Lehmani, S. Durand-Vidal and P. Turq, Journal of Applied Polymer Science 68(3) (1998) 503.

    Google Scholar 

  22. G. H. Mc CAIN and M. J. COVITCH, Journal of the Electrochemical Society 131 (1984) 1350.

    Google Scholar 

  23. G. Gebel, P. Aldebert and M. Pineri, Polymer 34 (1993) 333.

    Google Scholar 

  24. F. F. Fan and A. J. Bard, Science 270 (1995) 1849.

    Google Scholar 

  25. M. V. Mirkin, Analytical Chemistry News and Features A 68 (1996) 177.

    Google Scholar 

  26. A. M. S. Elliott, Unpublished research, 1999.

  27. B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes and M. Thomas, Journal De Physique 51(12) (1990) 1341.

    Google Scholar 

  28. J. A. Elliott, PhD thesis, University of Bristol, 1998.

  29. J. A. Elliott and S. Hanna, Journal of Applied Crystallography 32 (1999) 1069.

    Google Scholar 

  30. J. Skilling and S. F. Gull, “Maximum Entropy and Bayesian Methods in Inverse Problems,” edited by C. R. Smith and W. T. Grandy JR. (Dordrecht: Riedel, 1985) p. 83.

    Google Scholar 

  31. G. Binnig, C. F. Quate and C. Gerber, Physics Review Letters 56 (1986) 930.

    Google Scholar 

  32. T. J. Mcmaster, J. K. Hobbs, P. J. Barham and M. J. Miles, Probe Microscopy 1(1) (1997) 43.

    Google Scholar 

  33. J. K. Hobbs, T. J. Mcmaster, M. J. Miles and P. J. Barham, Polymer 39(12) (1998) 2437.

    Google Scholar 

  34. B. Ratner and V. V. Tsukruk, “Scanning Probe Microscopy in Polymers” (ACS Books, Washington, 1998).

    Google Scholar 

  35. P. J. James, T. J. McMASTER, J. M. NEWTON and M. J. MILES, Polymer 41(11) (2000) 4223.

    Google Scholar 

  36. K. L. Babcock and C. B. Prater, D.I. Application Note A12, 1995.

  37. J. Tamayo and R. Garcia, Langmuir 12 (1996) 4431.

    Google Scholar 

  38. P. Leclere, R. Lazzaroni, J. L. Bredas, J. M. Yu, P. Dubois and R. Jerome, ibid. 12 (1996) 4317.

    Google Scholar 

  39. A. J. Howard, R. R. Rye and J. E. Houston, Journal of Applied Physics 79 (1996) 1885.

    Google Scholar 

  40. M. H. Whangbo, S. N. Magonov and H. Bengel, Probe Microscopy 1 (1997) 23.

    Google Scholar 

  41. J. Tamayo and R. Garcia, Applied Physics Letters 71 (1997) 2394.

    Google Scholar 

  42. R. Garcia, J. Tamayo, M. Calleja and F. Garcia, Applied Physics A-Materials Science & Processing 66(Pt1SS) (1998) S309.

    Google Scholar 

  43. J. P. Cleveland, B. Anczykowski, A. E. Schmid and V. B. Elings, Applied Physics Letters 72(20) (1998) 2613.

    Google Scholar 

  44. J. Tamayo and R. Garcia, ibid. 73(20) (1998) 2926.

    Google Scholar 

  45. J. A. Elliott, S. Hanna, A. M. S. Elliott and G. E. Cooley, Macromolecules 33 (2000) 4161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, P.J., Elliott, J.A., McMaster, T.J. et al. Hydration of Nafion® studied by AFM and X-ray scattering. Journal of Materials Science 35, 5111–5119 (2000). https://doi.org/10.1023/A:1004891917643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004891917643

Keywords

Navigation