Skip to main content
Log in

Integrable and Conformal Boundary Conditions for \(\widehat{s\ell}\)(2) A–D–E Lattice Models and Unitary Minimal Conformal Field Theories

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Integrable boundary conditions are studied for critical A–D–E and general graph-based lattice models of statistical mechanics. In particular, using techniques associated with the Temperley–Lieb algebra and fusion, a set of boundary Boltzmann weights which satisfies the boundary Yang–Baxter equation is obtained for each boundary condition. When appropriately specialized, these boundary weights, each of which depends on three spins, decompose into more natural two-spin edge weights. The specialized boundary conditions for the A–D–E cases are naturally in one-to-one correspondence with the conformal boundary conditions of \(\widehat{s\ell }\)(2) unitary minimal conformal field theories. Supported by this and further evidence, we conclude that, in the continuum scaling limit, the integrable boundary conditions provide realizations of the complete set of conformal boundary conditions in the corresponding field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324:581–596 (1989).

    Google Scholar 

  2. E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21:2375–2389 (1988).

    Google Scholar 

  3. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).

  4. R. E. Behrend and P. A. Pearce, A construction of solutions to reflection equations for interaction-round-a-face models, J. Phys. A 29:7827–7835 (1996).

    Google Scholar 

  5. G. Pradisi, A. Sagnotti, and Y. S. Stanev, Completeness conditions for boundary operators in 2D conformal field theory, Phys. Lett. B 381:97–104 (1996).

    Google Scholar 

  6. A. Sagnotti and Y. S. Stanev, Open descendants in conformal field theory, Fortschr. Phys. 44:585–596 (1996).

    Google Scholar 

  7. R. E. Behrend, P. A. Pearce, and J.-B. Zuber, Integrable boundaries, conformal boundary conditions and A-D-E fusion rules, J. Phys. A 31:L763–L770 (1998).

    Google Scholar 

  8. R. E. Behrend, P. A. Pearce, V. B. Petkova, and J.-B. Zuber, On the classification of bulk and boundary conformal field theories, Phys. Lett. B 444:163–166 (1998).

    Google Scholar 

  9. R. E. Behrend, P. A. Pearce, V. B. Petkova, and J.-B. Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 579:707–773 (2000).

    Google Scholar 

  10. V. Pasquier, Two-dimensional critical systems labelled by Dynkin diagrams, Nucl. Phys. B 285:162–172 (1987).

    Google Scholar 

  11. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241:333–380 (1984).

    Google Scholar 

  12. D. Friedan, Z. Qiu, and S. Shenker, Conformal invariance, unitarity and critical exponents in two dimensions, Phys. Rev. Lett. 52:1575–1578 (1984).

    Google Scholar 

  13. A. Cappelli, C. Itzykson, and J.-B. Zuber, Modular invariant partition functions in two dimensions, Nucl. Phys. B 280:445–465 (1987).

    Google Scholar 

  14. A. Cappelli, C. Itzykson, and J.-B. Zuber, The A-D-E classification of minimal and A (1)1 conformal invariant theories, Comm. Math. Phys. 113:1–26 (1987).

    Google Scholar 

  15. A. Kato, Classification of modular invariant partition functions in two dimensions, Mod. Phys. Lett. A 2:585–600 (1987).

    Google Scholar 

  16. D. A. Huse, Exact exponents for infinitely many new multicritical points, Phys. Rev. B 30:3908–3915 (1984).

    Google Scholar 

  17. V. Pasquier, Operator content of the A-D-E lattice models, J. Phys. A 20:5707–5717 (1987).

    Google Scholar 

  18. V. Pasquier, Lattice derivation of modular invariant partition functions on the torus, J. Phys. A 20:L1229–L1237 (1987).

    Google Scholar 

  19. J. L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 275:200–218 (1986).

    Google Scholar 

  20. H. Saleur and M. Bauer, On some relations between local height probabilities and conformal invariance, Nucl. Phys. B 320:591–624 (1989).

    Google Scholar 

  21. P. Di Francesco and J.-B. Zuber, SU(N) Lattice Integrable Models and Modular Invariance, in Recent Developments in Conformal Field Theories, S. Randjbar-Daemi, E. Sezgin, and J.-B. Zuber, eds. (World Scientific, 1990), pp. 179–215.

  22. V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B 330:523–556 (1990).

    Google Scholar 

  23. P. Di Francesco, Integrable lattice models, graphs and modular invariant conformal field theories, Int. J. Mod. Phys. A 7:407–500 (1992).

    Google Scholar 

  24. P. Dorey, Partition functions, intertwiners and the Coxeter element, Int. J. Mod. Phys. A 8:193–208 (1993).

    Google Scholar 

  25. L. Chim, Boundary S-matrix for the tricritical Ising model, Int. J. Mod. Phys. A 11:4491–4512 (1996).

    Google Scholar 

  26. D. L. O'Brien, P. A. Pearce, and S. O. Warnaar, Finitized conformal spectrum of the Ising model on the cylinder and torus, Physica A 228:63–77 (1996).

    Google Scholar 

  27. D. L. O'Brien, P. A. Pearce, and S. O. Warnaar, Analytic calculation of conformal partition functions: Tricritical hard squares with fixed boundaries, Nucl. Phys. B 501:773–799 (1997).

    Google Scholar 

  28. M. T. Batchelor, Surface operator content of the A L face models, Physica A 251:132–142 (1998).

    Google Scholar 

  29. I. Affleck, M. Oshikawa, and H. Saleur, Boundary critical phenomena in the three-state Potts model, J. Phys. A 31:5827–5842 (1998).

    Google Scholar 

  30. A. L. Owczarek and R. J. Baxter, A class of interaction-round-a-face models and its equivalence with an ice-type model, J. Stat. Phys. 49:1093–1115 (1987).

    Google Scholar 

  31. H. Fan, B. Y. Hou, and K. J. Shi, General solution of reflection equation for eight-vertex SOS model, J. Phys. A 28:4743–4749 (1995).

    Google Scholar 

  32. C. Ahn and W. M. Koo, Boundary Yang-Baxter equation in the RSOS/SOS representation, Nucl. Phys. B 468:461–486 (1996).

    Google Scholar 

  33. R. E. Behrend, P. A. Pearce, and D. L O'Brien, Interaction-round-a-face models with fixed boundary conditions: The ABF fusion hierarchy, J. Stat. Phys. 84:1–48 (1996).

    Google Scholar 

  34. R. E. Behrend and P. A. Pearce, Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models, Int. J. Mod. Phys. B 11:2833–2847 (1997).

    Google Scholar 

  35. C. Ahn and C. K. You, Complete non-diagonal reflection matrices of RSOS/SOS and hard hexagon models, J. Phys. A 31:2109–2121 (1998).

    Google Scholar 

  36. H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the “percolation” problem, Proc. Roy. Soc. Lond. A 322:251–280 (1971).

    Google Scholar 

  37. T. Deguchi, Y. Akutsu, and M. Wadati, Exactly solvable models and new link polynomials. III. Two-variable topological invariants, J. Phys. Soc. Japan 57:757–776 (1988).

    Google Scholar 

  38. T. Deguchi, M. Wadati, and Y. Akutsu, Exactly solvable models and new link polynomials. V. Yang-Baxter operator and Braid-Monoid algebra, J. Phys. Soc. Japan 57:1905–1923 (1988).

    Google Scholar 

  39. M. Wadati, T. Deguchi, and Y. Akutsu, Exactly solvable models and knot theory, Phys. Rep. 180:247–332 (1989).

    Google Scholar 

  40. P. P. Kulish, N. Y. Reshetikhin, and E. K. Sklyanin, Yang-Baxter equation and representation theory: I, Lett. Math. Phys. 5:393–403 (1981).

    Google Scholar 

  41. E. Date, M. Jimbo, T. Miwa, and M. Okado, Fusion of the eight vertex SOS model, Lett. Math. Phys. 12:209–215 (1986).

    Google Scholar 

  42. E. Date, M. Jimbo, T. Miwa, and M. Okado, Erratum and addendum: Fusion of the eight vertex SOS model, Lett. Math. Phys. 14:97 (1987).

    Google Scholar 

  43. E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identities, Adv. Stud. Pure Math. 16:17–122 (1988).

    Google Scholar 

  44. Y. K. Zhou and P. A. Pearce, Fusion of A-D-E lattice models, Int. J. Mod. Phys. B 8:3531–3577 (1994).

    Google Scholar 

  45. P. P. Kulish, Yang-Baxter equation and reflection equations in integrable models, in Low-Dimensional Models in Statistical Physics and Quantum Field Theory, H. Grosse and L. Pittner, eds. (Springer-Verlag, 1996), pp. 125–144.

  46. I. V. Cherednik, Factorizing particles on a half line and root systems, Teor. Mat. Fiz. 61:35–44 (1984).

    Google Scholar 

  47. G. E. Andrews, R. J. Baxter, and P. J. Forrester, Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Stat. Phys. 35:193–266 (1984).

    Google Scholar 

  48. V. Pasquier, Exact solubility of the D n series, J. Phys. A 20:L217–L220 (1987).

    Google Scholar 

  49. P. Di Francesco and J.-B. Zuber, SU(N) lattice integrable models associated with graphs, Nucl. Phys. B 338:602–646 (1990).

    Google Scholar 

  50. P. Roche, Ocneanu cell calculus and integrable lattice models, Comm. Math. Phys. 127:395–424 (1990).

    Google Scholar 

  51. P. A. Pearce and Y. K. Zhou, Intertwiners and A-D-E lattice models, Int. J. Mod. Phys. B 7:3649–3705 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrend, R.E., Pearce, P.A. Integrable and Conformal Boundary Conditions for \(\widehat{s\ell}\)(2) A–D–E Lattice Models and Unitary Minimal Conformal Field Theories. Journal of Statistical Physics 102, 577–640 (2001). https://doi.org/10.1023/A:1004890600991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004890600991

Navigation