Skip to main content
Log in

Prediction of the fracture toughness of fibrous composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A statistical/micromechanical model is developed for the prediction of the fracture toughness of fibrous composites. The fracture resistance of the material is assumed to be related to the statistical distribution of the fiber pull-out length. The distribution of the fiber pull-out length is derived from the fiber strength distribution. The R-curve behavior of the fibrous composite is predicted and interpreted based on the present model. The limiting fracture toughness is predicted to be proportional to the square root of the ineffective length, or proportional to the square root of the fiber length if the fiber length is less than the ineffective length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Harris, Metal Science 14 (1980) 351.

    Google Scholar 

  2. S. Gaggar and L. J. Broutman, J. Composite Materials 9 (1975) 216.

    Google Scholar 

  3. J. E. Ritter, M. R. Lin and T. J. Lardner, J. Mater. Sci. 24 (1989) 339.

    Google Scholar 

  4. H. C. Cao, J. Yang and A. G. Evans,Acta Metall. Mater. 40 (1992) 2307.

    Google Scholar 

  5. B. Cotterell and Y. W. Mai, “Fracture Mechanics of Ce-mentitious Materials” (Blackie Academic and Professional, 1996).

  6. D. B. Marshall, O. Sbaizero, L. S. Sigl and A. G. Evans, J. Am. Ceram. Soc. 72 (1989) 525.

    Google Scholar 

  7. P. W. R. Boaumont and P. D. Antice,J. Mater. Sci. 12 (1980) 2619.

    Google Scholar 

  8. C. R. Chiang, Int. J. Fracture 53 (1992) 337.

    Google Scholar 

  9. M. Creager and P. C. Paris, ibid. 3 (1967)247.

    Google Scholar 

  10. J. P. Benthem, Int. J. Solids Structures 23 (1987) 239.

    Google Scholar 

  11. C. R. Chiang, J. Appl. Mech. 58 (1991) 834.

    Google Scholar 

  12. C. R. Chiang, Int. J. Fracture 68 (1994) R41. (and Addendum in 70, R99).

    Google Scholar 

  13. J. K. Wells and P. W. R. Beaumont, J. Mater. Sci. 20 (1985) 1275.

    Google Scholar 

  14. P. W. R. Beaumont Idem., ibid. 20 (1985) 2735.

    Google Scholar 

  15. B. W. Rosen, AIAA J. 2 (1964) 1985.

    Google Scholar 

  16. Y. Termonia, J. Mater. Sci. 22 (1987) 504.

    Google Scholar 

  17. A. Kelly, “Strong Solids” (Oxford University Press, 1973).

  18. C. R. Chiang, Comp. Sci. and Tech. 50 (1994) 479.

    Google Scholar 

  19. J. L. Helfet and B. Harris, J. Mater. Sci. 7 (1972) 494.

    Google Scholar 

  20. A. Garg, Eng. Frac. Mech. 22 (1985) 1035.

    Google Scholar 

  21. C. R. Chiang, in Proceedings of the Joint EFG/ICF international conference on Fracture of Engineering Materials and Structures, Singapore, August 1991, edited by S. H. Teoh and K. H. Lee (Elsevier Applied Science, 1991) p. 165.

  22. J. K. Kim and Y. W. Mai, “Engineered Interfaces in Fibre-Reinforced Composites” (Elsevier, 1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, C.R. Prediction of the fracture toughness of fibrous composites. Journal of Materials Science 35, 3161–3166 (2000). https://doi.org/10.1023/A:1004884322817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004884322817

Keywords

Navigation