Skip to main content
Log in

Wavevector-Dependent Susceptibility in Quasiperiodic Ising Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using the various functional relations for correlation functions in planar Ising models, new results are obtained for the correlation functions and the q-dependent susceptibility for Ising models on a quadratic lattice with quasiperiodic coupling constants. The effects are clearest if the interactions are both attractive and repulsive according to a quasiperiodic pattern. In particular, an exact scaling limit result for the two-point correlation function of the Z-invariant inhomogeneous Ising model is presented and the q-dependent susceptibility is calculated for some cases where the coupling constants vary according to Fibonacci rules. It is found that the ferromagnetic case differs drastically from the case with both ferro- and antiferromagnetic bonds. In the mixed case, the peaks of the q-dependent susceptibility are everywhere dense for temperature T both above or below the critical temperature Tc, but due to overlap only a finite number of peaks is visible. This number of visible peaks decreases as T moves away from Tc. In the ferromagnetic case, there is typically only one single peak at q=0, in spite of the aperiodicity present in the lattice. These results provide evidence that in real systems, even if the atoms arrange themselves aperiodically, there will be no dramatic difference in the diffraction pattern, unless the pair correlation function has clear aperiodic oscillations. The number of oscillations per correlation length determines the number of visible peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).

    Google Scholar 

  2. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65:117–149 (1944).

    Google Scholar 

  3. B. Kaufman, Crystal statistics. II. Partition function evaluated by spinor analysis, Phys. Rev. 76:1232–1243 (1949).

    Google Scholar 

  4. B. Kaufman and L. Onsager, Crystal statistics. III. Short-range order in a binary Ising lattice, Phys. Rev. 76:1244–1252 (1949).

    Google Scholar 

  5. L. Onsager, Discussion, Nuovo Cimento (Ser. 9) 6(Suppl.):261 (1949).

    Google Scholar 

  6. C. N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev. 85:808–816 (1952).

    Google Scholar 

  7. E. W. Montroll, R. B. Potts, and J. C. Ward, Correlations and spontaneous magnetization of the two-dimensional Ising model, J. Math. Phys. 4:308–322 (1963).

    Google Scholar 

  8. T. T. Wu, Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model. I, Phys. Rev. 149:380–401 (1966).

    Google Scholar 

  9. L. P. Kadanoff, Spin-spin correlations in the two-dimensional Ising model, Nuovo Cimento (Ser. 10) B 44:276–305 (1966).

    Google Scholar 

  10. B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, Mass, 1973).

    Google Scholar 

  11. T. T. Wu, B. M. McCoy, C. A Tracy, and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13: 316–374 (1976).

    Google Scholar 

  12. R. J. Baxter, Solvable eight vertex model on an arbitrary planar lattice, Phil. Trans. R. Soc. Lond. A 289:315–346 (1978).

    Google Scholar 

  13. R. J. Baxter, Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics, Proc. R. Soc. Lond. A 404:1–33 (1986).

    Google Scholar 

  14. H. Au-Yang and J. H. H. Perk, Toda lattice equation and Wronskians in the 2D Ising model, Physica D 18:365–366 (1986).

    Google Scholar 

  15. J. H. H. Perk, Quadratic identities for Ising correlations, Phys. Lett. A 79:3–5 (1980).

    Google Scholar 

  16. H. Au-Yang and J. H. H. Perk, Critical correlations in a Z-invariant inhomogeneous Ising model, Physica A 144:44–104 (1987).

    Google Scholar 

  17. H. Au-Yang and J. H. H. Perk, Solution of Hirota's discrete-time Toda lattice equation and the critical correlations in the Z-invariant Ising model, in Proc. 1987 Summer Research Institute on Theta Functions, Proc. Symp. Pure Math., Vol. 49, Part 1, L. Ehrenpreis and R. C. Gunning, eds. (Am. Math. Soc., Providence, R.I., 1989), pp. 287–293.

    Google Scholar 

  18. J. R. Reyes Martínez, Correlation functions for the Z-invariant Ising model, Phys. Lett. A 227:203–208 (1997).

    Google Scholar 

  19. J. R. Reyes Martínez, Multi-spin correlation functions for the Z-invariant Ising model, Physica A 256:463–484 (1998).

    Google Scholar 

  20. B. Davies, O. Foda, M. Jimbo, T, Miwa, and A. Nakayashiki, Diagonalization of the XXZ Hamiltonian by vertex operators, Commun. Math. Phys. 151:89–153 (1993).

    Google Scholar 

  21. M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models, Regional Conference Series in Mathematics, Nr. 85 (Am. Math. Soc., Providence, R.I., 1995).

    Google Scholar 

  22. N. V. Antonov and V. E. Korepin, Critical properties and correlation functions of the eight-vertex model on a quasicrystal, Zap. Nauch. Semin. LOMI 161:13–23 (1987) [J. Sov. Math. 46:2058–2065 (1989)].

    Google Scholar 

  23. N. V. Antonov and V. E. Korepin, Critical properties of completely integrable spin models in quasicrystals, Teor. Mat. Fiz. 77:402–411 (1988) [Theor. Math. Phys. 77:1282–1288 (1988)].

    Google Scholar 

  24. V. E. Korepin, Eight-vertex model of the quasicrystal, Phys. Lett. A 118:285–287 (1986).

    Google Scholar 

  25. V. E. Korepin, Completely integrable models in quasicrystals, Commun. Math. Phys. 110:157–171 (1987).

    Google Scholar 

  26. T. C. Choy, Ising models on two-dimensional quasi-crystals: Some exact results, Intern. J. Mod. Phys. B 2:49–63 (1988).

    Google Scholar 

  27. M. Baake, U. Grimm, and R. J. Baxter, A critical Ising model on the labyrinth, Intern. J. Mod. Phys. B 8:3579–3600 (1994).

    Google Scholar 

  28. U. Grimm, M. Baake, and H. Simon, Ising spins on the labyrinth, in Proc. of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, eds. (World Scientific, Singapore, 1995), pp. 80–83.

    Google Scholar 

  29. U. Grimm and M. Baake, Aperiodic Ising models, in The Mathematics of Long-Range Aperiodic Order, R. V. Moody, ed. (Kluwer, Dordrecht, 1997), pp. 199–237.

    Google Scholar 

  30. J. A. Ashraff and R. B. Stinchcombe, Dynamic structure factor for Fibonacci-chain quasicrystal, Phys. Rev. B 39:2670–2677 (1989).

    Google Scholar 

  31. C. A. Tracy and B. M. McCoy, Neutron scattering and the correlation functions of the two-dimensional Ising model near Tc, Phys. Rev. Lett. 31:1500–1504 (1973).

    Google Scholar 

  32. J. Stephenson, Ising-model spin correlations on the triangular lattice, J. Math. Phys. 5:1009–1024 (1964).

    Google Scholar 

  33. J. Stephenson, Ising-model spin correlations on the triangular lattice. II. Fourth-order correlations, J. Math. Phys. 7:1123–1132 (1966).

    Google Scholar 

  34. J. Stephenson, Ising-model spin correlations on the triangular lattice. III. Isotropic antiferromagnetic lattice, J. Math. Phys. 11:413–419 (1970).

    Google Scholar 

  35. H. G. Vaidya, The spin-spin correlation functions and susceptibility amplitudes for the two-dimensional Ising model: Triangular lattice, Phys. Lett. A 57:1–4 (1976).

    Google Scholar 

  36. M. Jimbo and T. Miwa, Studies on holonomic quantum fields. XVII, Proc. Japan Acad. A 56:405–410 (1980), Errata 57:347 (1981).

    Google Scholar 

  37. H. Au-Yang and J. H. H. Perk, Ising correlations at the critical temperature, Phys. Lett. A 104:131–134 (1984).

    Google Scholar 

  38. B. M. McCoy and J. H. H. Perk, Relation of conformal field theory and deformation theory for the Ising model, Nucl. Phys. B 285[FS19]:279–294 (1987).

    Google Scholar 

  39. C. A. Tracy, Universality class of a Fibonacci Ising model, J. Stat. Phys. 51:481–490 (1988).

    Google Scholar 

  40. C. A. Tracy, Universality classes of some aperiodic Ising models, J. Phys. A 11:L603–L605 (1988).

    Google Scholar 

  41. T. C. Lubensky, Symmetry, elasticity, and hydrodynamics in quasiperiodic structures, in Introduction to Quasicrystals, Aperiodicity and Order, Vol. 1, M. V. Jarić, ed. (Academic Press, Boston, 1988), pp. 199–280.

    Google Scholar 

  42. C. L. Henley, Quasicrystal order, its origins and its consequences: A survey of current models, Comments Cond. Mat. Phys. 13:59–117 (1987).

    Google Scholar 

  43. C. Janot, Quasicrystals: A Primer, 2nd ed. (Clarendon Press, Oxford, 1994).

    Google Scholar 

  44. D. Shechtman, I. Blech, D. R. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53:1951–1953 (1984).

    Google Scholar 

  45. P. Bak and A. I. Goldman, Quasicrystallography, in Introduction to Quasicrystals, Aperiodicity and Order, Vol. 1, M. V. Jarić, ed. (Academic Press, Boston, 1988), pp. 143–170.

    Google Scholar 

  46. L. Pauling, Icosahedral and decagonal quasicrystals as multiple twins in cubic crystals, in Extended Icosahedral Structures, Aperiodicity and Order, Vol. 3, M. V. Jarić and D. Gratias, eds. (Academic Press, Boston, 1989), pp. 137–162.

    Google Scholar 

  47. P. W. Stephens, The icosahedral glass model, in Extended Icosahedral Structures, Aperiodicity and Order, Vol. 3, M. V. Jarić and D. Gratias, eds. (Academic Press, Boston, 1989), pp. 37–104.

    Google Scholar 

  48. H. Simon and M. Baake, Lee-Yang zeros in the scaling region of a two-dimensional quasiperiodic Ising model, J. Phys. A 30:5319–5327 (1997).

    Google Scholar 

  49. S. M. Bhattacharjee, J.-S. Ho, and J. A. Y. Johnson, Translational invariance in critical phenomena: Ising model on a quasi-lattice, J. Phys. A 20:4439–4448 (1987).

    Google Scholar 

  50. J. P. Lu, T. Odagaki, and J. L. Birman, Properties of one-dimensional quasilattices, Phys. Rev. B 33:4809–4817 (1986).

    Google Scholar 

  51. H. Au-Yang and B. M. McCoy, Theory of layered Ising models: Thermodynamics, Phys. Rev. B 10:886–891 (1974).

    Google Scholar 

  52. J. R. Hamm, Regularly spaced blocks of impurities in the Ising model: Critical temperature and specific heat, Phys. Rev. B 15:5391–5411 (1977).

    Google Scholar 

  53. B. Nickel, Private Communication. The method is also used in: W. P. Orrick, B. Nickel, A. J. Guttmann, and J. H. H. Perk, The Susceptibility of the Square Lattice Ising Model: New Developments, elsewhere in this issue.

  54. R. B. Griffiths, Correlations in Ising ferromagnets. I, J. Math. Phys. 8:478–483 (1967).

    Google Scholar 

  55. R. B. Griffiths, Correlations in Ising ferromagnets. II. External magnetic fields, J. Math. Phys. 8:484–489 (1967).

    Google Scholar 

  56. J. Ginibre, Simple proof and generalization of Griffiths' second inequality, Phys. Rev. Lett. 23:828–830 (1969).

    Google Scholar 

  57. M. Widom, Short-and long-range icosahedral order in crystals, glass, and quasicrystals, in Introduction to Quasicrystals, Aperiodicity and Order, Vol. 1, M. V. Jarić, ed. (Academic Press, Boston, 1988), pp. 59–110.

    Google Scholar 

  58. D. R. Nelson and M. Widom, Symmetry, Landau theory and polytope models of glass, Nucl. Phys. B 240[FS12]:113–139 (1984).

    Google Scholar 

  59. J. F. Sadoc and R. Mosseri, Icosahedral order, curved space and quasicrystals, in Extended Icosahedral Structures, Aperiodicity and Order, Vol. 3, M. V. Jarić and D. Gratias, eds. (Academic Press, Boston, 1989), pp. 163–188.

    Google Scholar 

  60. M. Baake, U. Grimm, and C. Pisani, Partition function zeros for aperiodic systems, J. Stat. Phys. 78:285–297 (1995).

    Google Scholar 

  61. P. Repetowicz, U. Grimm, and M. Schreiber, High-temperature expansion for Ising models on quasiperiodic tilings, J. Phys. A 32:4397–4418 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Au-Yang, H., Jin, BQ. & Perk, J.H.H. Wavevector-Dependent Susceptibility in Quasiperiodic Ising Models. Journal of Statistical Physics 102, 501–543 (2001). https://doi.org/10.1023/A:1004882431942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004882431942

Navigation