Super-plastic behavior of the brittle polymer film in multilayer systems

Abstract

Crazes are usually observed preceding brittle fracture of glassy polymers. They were believed to result from a necking process similar to that in fiber drawing. In this study, we further exploited the necking characteristic of crazing by sandwiching the craze-forming brittle polymer film between two ductile polymer films to examine the deformation behavior of the brittle polymer when necking is suppressed. We found that when necking was suppressed, the brittle polymer film demonstrated a super-plastic behavior in that the film could be stretched to a very large deformation without any strain localization or cracking, and this deformation was shown to be mostly plastic. The super-plastic behavior is remarkably dependent on the thickness of the outer ductile polymer layers. When the outer-layer thickness is less than a critical thickness, the brittle polymer film in combination with the sandwich structure demonstrated a different degree of strain localization with the critical strain increased with the thickness of the outer-layer. The microstructure of deformation zones in the multi-layer samples was investigated by atomic force microscopy (AFM). The effect of the interfacial strength at the polymer interfaces was also investigated by SIMS and discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. M. Ward, “Mechanical Properties of Solid Polymers,” 2nd ed. (John Wiley & Sons press, 1983).

  2. 2.

    R. P. Kambour, J. Polym. Sci. Macromol. Rev. 7 (1973) 1.

    Google Scholar 

  3. 3.

    S. Rabinowitz and P. Beardmore, CRC Reviews in Macromol. Sci. 1 (1972) 1.

    Google Scholar 

  4. 4.

    A. N. Gent, “The Mechanics of Fracture,” AMD Vol. 19 (New, York, ASME 1976) p. 55.

    Google Scholar 

  5. 5.

    A. M. Donald and E. J. Kramer, Phil. Mag. A43 (1981) 857.

    Google Scholar 

  6. 6.

    E. J. Kramer, Advances in Polymer Science 52/53 (1983) 1.

    Google Scholar 

  7. 7.

    H. H. Kausch, “Polymer Fracture” (Springer-Verlag, Heidelberg, 1978).

    Google Scholar 

  8. 8.

    B. D. Lauterwasser and E. J. Kramer, Phil. Mag. A39 (1979) 469.

    Google Scholar 

  9. 9.

    H. R. Brown, J. Mater. Sci. 14 (1979) 237.

    Google Scholar 

  10. 10.

    A. M. Donald, E. J. Kramer and R. A. Bubeck, J. Polym. Sci.: Polym. Phys. Ed. 20 (1982) 1129.

    Google Scholar 

  11. 11.

    N. Verhuelpen-heymans, Polymer 20 (1979) 356.

    Google Scholar 

  12. 12.

    J. S. Trent, I. Palley and E. Baer, J. Mater. Sci. 16 (1981) 331.

    Google Scholar 

  13. 13.

    A. C.-M. Yang, M. S. Kunz and J. A. Logan, Macromol. 26 (1993) 1767.

    Google Scholar 

  14. 14.

    R. E. Robertson, J. Appl. Polym. Sci. 7 (1963) 443.

    Google Scholar 

  15. 15.

    N. Brown and I. M. Ward, J. Polym. Sci. A-2 6 (1968) 607.

    Google Scholar 

  16. 16.

    I. M. Ward, J. Mater. Sci. 6 (1971) 1397.

    Google Scholar 

  17. 17.

    B. L. Gregory, A. Siegmann, J. Im, A. Hiltner and E. Baer, J. Mater. Sci. 22 (1987) 532.

    Google Scholar 

  18. 18.

    S. J. Pan, J. Im, M. J. Hill, A. Keller, A. Hiltner and E. Baer, J. Polym. Sci.: Polym. Phys. Ed 28 (1990) 1105.

    Google Scholar 

  19. 19.

    M. Ma, K. Vijayan, A. Hiltner, J. Im and E. Baer, J. Mater. Sci. 25 (1990) 2039.

    Google Scholar 

  20. 20.

    E. Shin, A. Hiltner and E. Baer, J. Appl. Polym. Sci. 47 (1993) 269.

    Google Scholar 

  21. 21.

    D. Haderski, K. Sung, J. Im, A. Hiltner and E. Baer, ibid. 52 (1994) 121.

    Google Scholar 

  22. 22.

    K. Sung, D. Haderski, A. Hiltner and E. Baer, ibid. 52 (1994) 147.

    Google Scholar 

  23. 23.

    C. X. Zhu, S. Umemoto, N. Okui and T. Sakai, J.Mater. Sci. 23 (1988) 4091.

    Google Scholar 

  24. 24.

    S. Umemoto, N. Okui and T. Sakai Idem., ibid. 24 (1989) 2787.

    Google Scholar 

  25. 25.

    I. H. Hal, J. Appl. Polym. Sci. 12 (1968) 731.

    Google Scholar 

  26. 26.

    M. Wada, T. Nakamura and N. Kinoshita, Phil. Mag. A38 (1978) 167.

    Google Scholar 

  27. 27.

    A. C.-M, Yang and T. W. Wu, J. Mater. Sci. 28 (1993) 955.

    Google Scholar 

  28. 28.

    A. C.-M, Yang, R. C. Wang and J. H. Lin, Polymer 37 (1996) 5751.

    Google Scholar 

  29. 29.

    G. D. Merfeld, A. Darim, B. Majumdar, S. K. Satija and D. R. Paul, J. Polym. Sci.: Polym. Phys. Ed 36 (1998) 3115.

    Google Scholar 

  30. 30.

    J. Washiyama, E. J. Kramer and C.-Y. Hui, ibid. 26 (1993) 2928.

    Google Scholar 

  31. 31.

    A. M. Donald and E. J. Kramer, Polymer 23 (1982) 457.

    Google Scholar 

  32. 32.

    A. M. Donald, T. Chan and E. J. Kramer, J. Mater. Sci. 16 (1981) 669.

    Google Scholar 

  33. 33.

    E. J. Kramer, Polym. Eng. & Sci. 24 (1984) 761.

    Google Scholar 

  34. 34.

    L. L. Berger and E. J. Kramer, Macromol. 20 (1987) 1980.

    Google Scholar 

  35. 35.

    C. S. Henkee and E. J. Kramer, J. Mat. Sci. 21 (1986) 1398.

    Google Scholar 

  36. 36.

    C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).

  37. 37.

    T. Ricco, A. Pavan and F. Danusso, Polym. Eng. & Sci. 18 (1978) 774.

    Google Scholar 

  38. 38.

    L. J. Broutman and G. Panizza, Int. J. Polym., Mater. 1 (1971) 95.

    Google Scholar 

  39. 39.

    C. H. Lin and A. C.-M. Yang, in preparation.

  40. 40.

    K. R. Shull and E. J. Kramer, Macromol. 23 (1990) 4780.

    Google Scholar 

  41. 41.

    H. R. Brown, ibid. 24 (1191) 2752.

    Google Scholar 

  42. 42.

    KEVIN H. Dai, E. J. Kramer and K. R. Shull, ibid. 25 (1992) 220.

    Google Scholar 

  43. 43.

    C. Creton, E. J. Kramer, C.-Y. Hui and H. R. Brown, ibid. 25 (1992) 3075.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, JH., Yang, A.CM. Super-plastic behavior of the brittle polymer film in multilayer systems. Journal of Materials Science 35, 4231–4242 (2000). https://doi.org/10.1023/A:1004863714142

Download citation

Keywords

  • Atomic Force Microscopy
  • Polymer Film
  • Brittle Fracture
  • Deformation Behavior
  • Strain Localization