Skip to main content
Log in

Fluxon Pinning by Artificial Magnetic Arrays

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The field dependent transport properties of superconducting niobium films, which are modulated by a regular array of non-magnetic and magnetic normal-metal inclusions (dots), have been investigated. Strong peaks in the critical current are seen for fields at which the vortex density in the superconductor is some rational or sub-rational multiple of the dot density. This commensurate peak effect is enhanced for the magnetic dot arrays when the dots are magnetized in a direction parallel to the applied magnetic field and suppressed when they are anti-aligned. Qualitative information on the strength of this dot-vortex interaction is inferred from the commensurate peaks present and missing for different regular lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Civale, A. D. Marwick, T. K. Worthington, M. A. Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sun, J. R. Clem, and F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991).

    Google Scholar 

  2. M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995)

    Google Scholar 

  3. Y. Nozaki, Y. Otani, K. Runge, H. Miyajima, B. Pannetier, J. P. Nozières, and G. Fillion, J. Phys. 79, 8571 (1996); J. L. Martin, M. Velez, J. Nogues, and I. K. Schuller, Phys. Rev. Lett. 79, 1929 (1997); D. J. Morgan and J. B. Ketterson, Phys. Rev. Lett. 80, 3614 (1998); J. R. Martin, M. Velez, and J. Nogues et al., J. Magn. Magn. Mater. 177, 915 (1998); A. Terentiev, D. B. Watkins, L. E. De Long, D. J. Morgan, and J. B. Ketterson, Physica C 324, 1 (1999); M. J. van Bael, K. Temst, and L. van Look et al., Physica B 284 893 (2000); M. J. van Beal, L. Look, and K. Temsk et al., Physica C 332, 12 (2000); P. L. van Look, M. J. van Beal, K. Temst et al., Pysica C332, 356 (2000); A. Prieto, P. Hoffman, and I. K. Schuller, Phys. Rev. B 61, 6958 (2000); J. L. Martin, M. Velez, and A. Hoffman et al., Phys. Rev. Lett. 83, 1022 (1999).

    Google Scholar 

  4. G. S. Mkrtchyan and V. V. Shmidt, Sov. Phys. JETP 34, 195 (1972).

    Google Scholar 

  5. A. I. Buzdin, Phys. Rev. B 47, 11-416 (1993).

    Google Scholar 

  6. I. K. Marmorkos, A. Matulis, and F. M. Peeters, Phys. Rev. B 53, 2677 (1996).

    Google Scholar 

  7. David J. Morgan, Ph.D. thesis, Northwestern University (1998).

  8. C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).

    Google Scholar 

  9. P. G. deGennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966); J. B. Ketterson and S. N. Song, Superconductivity, Cambridge University Press, New York, (1999).

    Google Scholar 

  10. B. W. Maxfield and W. L. McLean, Phys. Rev. 139, A1515, 30 (1965).

    Google Scholar 

  11. M. Tinkham, Introduction to Superconductivity, Krieger, New York.

  12. C. Reichhardt, C. J. Olson, J. Groth, S. Field, and F. Nori, Phys. Rev. B 53, R8898 (1996).

    Google Scholar 

  13. D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48, 13 060 (1993).

    Google Scholar 

  14. S. H. Autler, J. Low Temp. Phys. 9, 241 (1972).

    Google Scholar 

  15. M. W. Coffey and E. T. Phipps, Phys. Rev. B 53, 389 (1996).

    Google Scholar 

  16. C. Reichhardt, J. Groth, C. J. Olson, S. Field, and F. Nori, Phys. Rev. B 54, 16 108 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D.J., Ketterson, J.B. Fluxon Pinning by Artificial Magnetic Arrays. Journal of Low Temperature Physics 122, 37–73 (2001). https://doi.org/10.1023/A:1004860719107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004860719107

Keywords

Navigation