Skip to main content

Interferencing in Coupled Bose–Einstein Condensates

Abstract

We consider an exactly soluble model of two Bose–Einstein condensates with a Josephson-type of coupling. Its equilibrium states are explicitly found showing condensation and spontaneously broken gauge symmetry. It is proved that the total number and total phase fluctuation operators, as well as the relative number and relative current fluctuation operators form both a quantum canonical pair. The exact relation between the relative current and phase fluctuation operators is established. Also the dynamics of these operators is solved showing the collapse and revival phenomenon.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiemann, and E. A. Cornell, Science 269:198 (1995).

    Google Scholar 

  2. 2.

    K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Physical Review Letters 75:2969 (1995).

    Google Scholar 

  3. 3.

    C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75:1687 (1995).

    Google Scholar 

  4. 4.

    M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science 273:84 (1996).

    Google Scholar 

  5. 5.

    P. Nozieres and D. Pines, The Theory of Quantum Liquids, Vol. 2 (Addison-Wesley, Massachusets, 1990).

    Google Scholar 

  6. 6.

    W. Gardiner, Phys. Rev. A 56:1414 (1997).

    Google Scholar 

  7. 7.

    M. Fannes, J. V. Pulè, and A. Verbeure, Helvetica Physica Acta 55:391-399 (1982).

    Google Scholar 

  8. 8.

    D. Goderis and P. Vets, Communications in Mathematical Physics 122:249 (1989).

    Google Scholar 

  9. 9.

    D. Goderis, A. Verbeure, and P. Vets, Communications in Mathematical Physics 128:533-549 (1990).

    Google Scholar 

  10. 10.

    T. Michoel and A. Verbeure, J. Stat. Phys. 96(5/6):1125-1162 (1999).

    Google Scholar 

  11. 11.

    E. M. Wright, T. Wong, M. J. Collet, S. M. Tan, and D. F. Walls, Phys. Rev. A 56:591 (1997).

    Google Scholar 

  12. 12.

    X. G. Wang, S. H. Pan, and G. Z. Yang, Physica A 274:484 (1999).

    Google Scholar 

  13. 13.

    P. Villain and M. Lewenstein, Phys. Rev. A 59:2250 (1998).

    Google Scholar 

  14. 14.

    T. Michoel and A. Verbeure, Preprint-KUL-TF-2000/02 (arXiv:math-ph/0001033) (2000).

  15. 15.

    D. Goderis, A. Verbeure, and P. Vets, Probability Theory and Related Fields 82:527-544 (1989).

    Google Scholar 

  16. 16.

    K. Huang, Statistical Mechanics (Wiley, London, 1967).

    Google Scholar 

  17. 17.

    E. B. Davies, Communications in Mathematical Physics 28:69 (1972).

    Google Scholar 

  18. 18.

    M. Fannes and A. Verbeure, J. Math. Phys. 21(7):1809-1818 (1980).

    Google Scholar 

  19. 19.

    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2 (Springer, Berlin/Heidelberg/New York, 1996).

    Google Scholar 

  20. 20.

    M. Fannes and A. Verbeure, Communications in Mathematical Physics 55:125-131 (1977).

    Google Scholar 

  21. 21.

    M. Fannes and A. Verbeure, Communications in Mathematical Physics 57:165-171 (1977).

    Google Scholar 

  22. 22.

    A. Verbeure and V. A. Zagrebnov, J. Stat. Phys. 69:329 (1992).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michoel, T., Verbeure, A. Interferencing in Coupled Bose–Einstein Condensates. Journal of Statistical Physics 102, 1383–1405 (2001). https://doi.org/10.1023/A:1004852731401

Download citation

  • Bose–Einstein condensation
  • fluctuations of a Josephson-type current
  • phase fluctuations
  • collapse and revivals
  • interferences in equilibrium