Skip to main content
Log in

Copper deposition during the corrosion of aluminum alloy 2024 in sodium chloride solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper and copper-rich particle clusters were observed to deposit on aging aircraft skin material (Al 2024 sheet coupons) after corrosion immersion experiments for 5 days in acidic (pH 3) neutral (pH ∼ 6), and basic (pH 11) 0.6 M NaCl solutions. SEM analysis employing an EDX spectrometer showed a propensity of large Cu particle clusters on Fe-rich or Fe-containing areas while a TEM inventory of second-phase particles in the alloy sheet showed a propensity of Al-Fe-Cu-Mn and Al-Cu-Si particles along with Al-Cu-Mg and Al-Cu-Fe-Mn-Si particles and particle clusters. A modified replication technique was used to lift particles from the corroded coupon surfaces. TEM analysis employing an EDX spectrometer showed a wide range of copper deposits exhibiting microdendritic morphologies in basic and neutral environments, and botryoidal (or nodular) morphologies in acidic environments. The plating or cementation of copper from solution as an electrochemical displacement reaction appears to be a major contributor to the pitting corrosion of 2024 aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Air Force Blue Ribbon Advisory Panel on Aircraft Coatings, Part 1: Basic Research” (Wright Laboratory, Aeronautical Systems Center, Air Force Systems Command, 1995). Prepared for Materials Directorate, Wright-Patterson AFB, Ohio.

  2. R. G. Buchheit, J. Electrochem. Soc. 142 (1995) 3994.

    Google Scholar 

  3. A. Garner and D. Tromans, Corrosion 35 (1979) 55.

    Google Scholar 

  4. K. Urishino and K. Sugimoto, Corrosion Sci. 19 (1979) 225.

    Google Scholar 

  5. R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie and G. L. Zender, J. Electrochem. Soc. 144(8) (1997) 2621.

    Google Scholar 

  6. N. Dimitrov, J. A. Mann and K. Sieradzki, ibid. 146(1) (1999) 98.

    Google Scholar 

  7. G. S. Chen, M. Gao and R. P. Wei, Corrosion Science 52(1) (1996) 8.

    Google Scholar 

  8. R. P. Wei, C-M. Liao and M. Gao, Metall. and Mater. Trans. A 29A (1998) 1153.

    Google Scholar 

  9. C. Miglionico, C. Stein and L. E. Murr, J. Mater. Sci. 26 (1991) 5134.

    Google Scholar 

  10. L. E. Murr and W. H. Kinard, American Scientist 81(March-April) (1993) 152.

    Google Scholar 

  11. A. Munitz, A. Zangvic and M. Metzger, Met. Trans. A 11A (1980) 1863.

    Google Scholar 

  12. M. Gao, C. R. Feng and R. P. Wei, Metall. and Mater. Trans. A 29A (1998) 1145.

    Google Scholar 

  13. ASM HANDBOOK, Vol. 13: Corrosion (ASM International Materials Park, OH, 1987) p. 584.

  14. L. E. Murr and V. Annamalai, Metall. Trans. B 9B (1978) 515.

    Google Scholar 

  15. V. Annamalai, J. Brent hiskey and L. E. Murr, Hydrometallurgy 3 (1978) 163.

    Google Scholar 

  16. V. Annamalai and L. E. Murr, ibid. 3 (1978) 249.

    Google Scholar 

  17. V. Annamalai, J. B. Hiskey and L. E. Murr, Trans. Soc. Mining Engrs. of AIME 266 (1979) 1963.

    Google Scholar 

  18. L. E. Murr, Mineral Sci. Engng. 12(3) (1980) 121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obispo, H.M., Murr, L.E., Arrowood, R.M. et al. Copper deposition during the corrosion of aluminum alloy 2024 in sodium chloride solutions. Journal of Materials Science 35, 3479–3495 (2000). https://doi.org/10.1023/A:1004840908494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004840908494

Keywords

Navigation