Skip to main content
Log in

Applications of Reflection Amplitudes in Toda-Type Theories

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Reflection amplitudes are defined as two-point functions of certain class of conformal field theories where primary fields are given by vertex operators with real couplings. Among these, we consider (Super-) Liouville theory and simply and non-simply laced Toda theories. In this paper we show how to compute the scaling functions of effective central charge for the models perturbed by some primary fields which maintains integrability. This new derivation of the scaling functions are compared with the results from conventional TBA approach and confirms our approach along with other non-perturbative results such as exact expressions of the on-shell masses in terms of the parameters in the action, exact free energies. Another important application of the reflection amplitudes is a computation of one-point functions for the integrable models. Introducing functional relations between the one-point functions in terms of the reflection amplitudes, we obtain explicit expressions for simply-laced and non-simply-laced affine Toda theories. These nonperturbative results are confirmed numerically by comparing the free energies from the scaling functions with exact expressions we obtain from the one-point functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. B. Zamolodchikov, Int. J. Mod. Phys. A 4:4235 (1989).

    Google Scholar 

  2. C. N. Yang and C. P. Yang, J. Math. Phys. 10:1115 (1969).

    Google Scholar 

  3. Al. B. Zamolodchikov, Nucl. Phys. B 342:695 (1990).

    Google Scholar 

  4. Al. B. Zamolodchikov, Resonance Factorized Scattering and Roaming Trajectories, preprint ENS-LPS-335 (1991).

  5. V. A. Fateev, E. Onofri, and Al. B. Zamolodchikov, Nucl. Phys. B 406:521 (1993).

    Google Scholar 

  6. A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B 477:577 (1996).

    Google Scholar 

  7. C. Ahn, C. Kim, and C. Rim, Nucl. Phys. B 556:505 (1999).

    Google Scholar 

  8. C. Ahn, V. Fateev, C. Kim, C. Rim, and B. Yang, Nucl. Phys. B 565:611 (2000).

    Google Scholar 

  9. C. Ahn, P. Baseilhac, V. Fateev, C. Kim, and C. Rim, Phys. Lett. B 481:114 (2000).

    Google Scholar 

  10. C. Ahn, P. Baseilhac, C. Kim, and C. Rim, in preparation.

  11. S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B 493:571 (1997).

    Google Scholar 

  12. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Phys. Lett. B 406:83 (1997).

    Google Scholar 

  13. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Nucl. Phys. B 516:562 (1998).

    Google Scholar 

  14. V. Fateev, Mod. Phys. Lett. A 15:259 (2000).

    Google Scholar 

  15. P. Baseilhac and V. A. Fateev, Nucl. Phys. B 532:567 (1998); Al. B. Zamolodchikov, in private communications.

    Google Scholar 

  16. V. Fateev and S. Lukyanov, Sov. Sci. Rev. A 212:212 (Physics) (1990).

    Google Scholar 

  17. P. Bouwknegt and K. Schoutens, W-symmetry (World Scientific, Singapore, 1995).

    Google Scholar 

  18. Al. B. Zamolodchikov, Int. J. Mod. Phys. A 10:1125 (1995).

    Google Scholar 

  19. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Phys. Lett. B 406:83 (1997).

    Google Scholar 

  20. R. C. Rashkov and M. Stanishkov, Phys. Lett. B 380:49 (1996).

    Google Scholar 

  21. R. H. Poghossian, Nucl. Phys. B 496:451 (1997).

    Google Scholar 

  22. T. Curtright and G. Ghandour, Phys. Lett. B 136:50 (1984).

    Google Scholar 

  23. E. Witten, Nucl. Phys. B 185:513 (1981).

    Google Scholar 

  24. A. Arinstein, V. Fateev, and A. Zamolodchikov, Phys. Lett. B 87:389 (1979).

    Google Scholar 

  25. H. W. Braden, E. Corrigan, P. E. Dorey, and R. Sasaki, Nucl. Phys. B 338:689 (1990).

    Google Scholar 

  26. G. W. Delius, M. T. Grisaru, S. Penati, and D. Zanon, Phys. Lett. B 256:164 (1991); C. Destri, H. de Vega, and V. Fateev, Phys. Lett. B 256:173 (1991).

    Google Scholar 

  27. E. Corrigan, P. E. Dorey, and R. Sasaki, Nucl. Phys. B 408:579 (1993).

    Google Scholar 

  28. C. Destri and H. de Vega, Nucl. Phys. B 358:251 (1991).

    Google Scholar 

  29. V. A. Fateev, Phys. Lett. B 324:45 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, C., Kim, C. & Rim, C. Applications of Reflection Amplitudes in Toda-Type Theories. Journal of Statistical Physics 102, 385–419 (2001). https://doi.org/10.1023/A:1004826214195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004826214195

Navigation