Skip to main content
Log in

Comparative performance of selected bond coats in advanced thermal barrier coating systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation was carried out to determine the comparative performance of selected bond coats representing the diffusion aluminides and overlays in thermal barrier coating systems. Emphasis was placed upon oxidation behavior, thermal stability, and failure mechanism. Isothermal oxidation tests were carried out attemperatures in the range of 1000 °C to 1150 °C. Scanning electron microscopy combined with energy dispersive x-ray spectroscopy, x-ray diffraction, and transmission electron microscopy were used to characterize the coating microstructure. Among the bond coats examined, overlays exhibited the best performance followed by Pt-aluminides and simple alunimides for a given alloy substrate. However, for all types of bond coats, failure of the coating system occurred by decohesion of the oxide scale at the oxide-bond coat interface. All bond coats examined were found to be degraded by oxidation and interdiffusion with the alloy substrate permitting the formation of non-protective oxide scale near the bond coat surface. Platinum as well as active elements such as Hf and Y were identified as key elements in improving the performance of thermal barrier coating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Wilde, J. Aerospace Eng. 209(G2) (1995) 85.

    Google Scholar 

  2. C. T. Sims, Advanced Materials and Processes 139(6) (1991) 32.

    Google Scholar 

  3. G. W. Meetham, High Temp. Mater. 13A (1990) 25.

    Google Scholar 

  4. H. Lammermam and G. Kienel, Advanced Mater. Process. 140(6) (1991) 18.

    Google Scholar 

  5. J. H. Wood and E. H. Goldman, in C. T. Sims, N. S. Stoloff and W. C. Hagel (eds.), Wiley, New York, 1987, p. 359.

  6. J. R. Nicholls and D. J. Stephenson, Met. and Mater. 7 (1991) 156.

    Google Scholar 

  7. T. N. Rhys-Jones and F. C. Toriz, High Temp. Tech. 7 (1989) 161.

    Google Scholar 

  8. A. Bennett, F. C. Toriz and A. B. Thakker, Surface and Coatings Tech. 23 (1987) 359.

    Google Scholar 

  9. H. M. Tawancy, N. Sridhar, N. M. Abbas and D. Rickerby, J. Mater. Sci. 33 (1998) 681.

    Google Scholar 

  10. U. Dietl, Surface and Coatings Tech. 68/69 (1994) 17.

    Google Scholar 

  11. J. H. Sun, E. Chang, C. H. Chao and M. J. Cheng, Oxid. Met. 40(5/6) (1993) 465.

    Google Scholar 

  12. S. M. Meier, D. M. Nissley, K. D. Sheffler and T. A. Cruse, Trans. ASME 114 (1992) 258.

    Google Scholar 

  13. W. Lih, E. Chang, B. C. Wu and C. H. Chao, Oxid. Met. 36(3/4) (1991) 221.

    Google Scholar 

  14. B. C. Wu, C. H. Chao and E. Chang, Mater. Sci. Eng. A124 (1990) 215.

    Google Scholar 

  15. B. C. Wu, E. Chang, C. H. Chao and M. L. Tasi, J. Mater. Sci. 25 (1990) 1112.

    Google Scholar 

  16. R. A. Miller, J. Eng. Gas Turbines and Power 111 (1989) 301.

    Google Scholar 

  17. G. W. Goward and L. W. Cannon, Trans. of ASME 110(1) (1988) 150.

    Google Scholar 

  18. J. S. Smith and D. H. Boone, Gas Turbine and Aeroengine Congress and Exposition, Brussels, Belgium, June 1990, ASME Paper No. 90-GT-319.

  19. H. Herman, Advanced Materials and Processes 137 (1990) 41.

    Google Scholar 

  20. F. H. Stott, in “The role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys,” edited by E. Lang (Elsevier Applied Science, London, 1989) p. 3.

    Google Scholar 

  21. J. E. Harris, J. Met. 39(1) (1987) 34.

    Google Scholar 

  22. G. W. Goward and D. H. Boone, Oxid. Met. 3(5) (1971) 475.

    Google Scholar 

  23. G. W. Goward, J. Met. 22(10) (1970) 31.

    Google Scholar 

  24. P. Tomaszewicz and G. R. Wallwork, in “Reviews of High Temperature Materials,” edited by J. Newkirk (Freund Publishing House, London, 1982) p. 49.

    Google Scholar 

  25. H. M. Tawancy, N. Sridhar, N. M. Abbas and D. Rickerby, Scripta Met. et Materialia 33(9) (1995) 1431.

    Google Scholar 

  26. H. M. Tawancy, N. M. Abbas and T. N. Rhys-Jones, Surface and Coatings Tech. 49 (1991) 1.

    Google Scholar 

  27. J. Schaffer, G. M. Kim, G. H. Meier and F. S. Pettit, in “The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys,” edited by E. Lang (Elsevier Applied Science, London, 1989) p. 231.

    Google Scholar 

  28. M. R. Jackson and J. R. Rairden, Met. Trans. 8A (1977) 1697.

    Google Scholar 

  29. R. Streiff and D. H. Boone, J. Mater. Eng. 10(1) (1988) 15.

    Google Scholar 

  30. H. M. Tawancy, N. Sridhar, N. M. Abbas and D. Rickerby, Scripta Met. et Materialia 33(9) (1995) 1431.

    Google Scholar 

  31. D. Delaunay and A. M. Huntz, J. Mater. Sci. 17 (1982) 207.

    Google Scholar 

  32. K. T. Faber and A. G. Evans, Acta Met. 31 (1983) 565, 577.

    Google Scholar 

  33. C. S. Giggins and F. S. Pettit, Met. Trans. 2 (1971) 1071.

    Google Scholar 

  34. A. W. Searcy, “Chemical and Mechanical Behavior of Inorganic Materials,” edited by A. W. Searcy, D. V. Ragone and U. Colombo (Wiley Interscience, New York, 1970) p. 33.

    Google Scholar 

  35. A. M. Huntz, in “The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys,” edited by E. Lang (Elsevier Applied Science London, 1989) p. 81.

    Google Scholar 

  36. A. Boumaza, G. Moulin and A. M. Huntz, Oxid. Met. 30(3/4) (1988) 141.

    Google Scholar 

  37. M. H. Lagrange, A. M. Huntz and J. H. Davidson, Corrosion Sci. 24(7) (1984) 613.

    Google Scholar 

  38. M. Levy, P. Farrell and F. S. Pettit, Corrosion NACE, 42(12) (1986) 708.

    Google Scholar 

  39. C. A. Barrett, R. V. Miner and D. R. Hull, Oxid. Met. 20(5/6) (1983) 255.

    Google Scholar 

  40. H. Hindam and D. P. Whittle, ibid. 18(5/6) (1982) 245.

    Google Scholar 

  41. P. Kofstad, in “The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys,” edited by E. Lang (Elsevier Applied Science, London, 1989) p. 367.

    Google Scholar 

  42. J. Jedlinski, ibid. (1989) p. 131.

  43. J. R. Nicholls and P. Hancock, ibid. (1989) p. 195.

  44. T. A. Ramanarayanan, M. Raghavan and R. Petkovic-Luton, Oxid. Met. 22(3/4) (1984) 83.

    Google Scholar 

  45. M. Raghavan and R. Petkovic-Luton Idem., J. Electrochem. Soc. 131 (1984) 923.

    Google Scholar 

  46. K. P. R. Reedy, J. L. Smialek and R. A. Copper, Oxid. Met. 17(5/6) (1982) 429.

    Google Scholar 

  47. F. A. Golightly, F. H. Stott and G. C. Wood, ibid. 10 (1976) 163.

    Google Scholar 

  48. B. Lustman, Trans. TMS-AIME 188 (1950) 995.

    Google Scholar 

  49. J. G. Smeggil, in “The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys,” edited by E. Lang (Elsevier Applied Science, London, 1989) p. 271.

    Google Scholar 

  50. J. L. Smialek, Metall. Trans. 18A (1987) 164.

    Google Scholar 

  51. K. L. Luthra and C. L. Briant, Oxid. Met. 26 (1986) 397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawancy, H.M., Sridhar, N., Abbas, N.M. et al. Comparative performance of selected bond coats in advanced thermal barrier coating systems. Journal of Materials Science 35, 3615–3629 (2000). https://doi.org/10.1023/A:1004825932601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004825932601

Keywords

Navigation