Skip to main content
Log in

Mechanisms of Primary Relaxation near Orientational-Glass and Structural-Glass Transitions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We discuss the universal features of the relaxation observed in glass formers near the structural-glass transformation temperature Tg. A macroscopic analysis of the relaxation dynamics is given using the correlation-length growth concept and the relevant diffusion exponent zg. Macroscopic relations, which expose temporal and spatial correlations, are proposed in terms of the characteristic temperatures, the exponent zg, and the fragility mg, related to the timescale. A stochastic approach to the problem at a mesoscopic level results in kinetic relations for zg, and the late-time and short-time asymptotic decay-law exponents; the Kohlrausch-Williams-Watts exponent βg and the von Schweidler exponent bg, respectively. A primary relaxation mechanism of anomalous diffusion, established for the amorphous polymers, leads to the kinetic equation zg=3(1/βg−1). Predictions for zg, based on the same mechanism, are given for the family of site-substituted orientational glasses. For the orientational glass in plastic crystals a distinct mechanism yields a new relation, zg=C(2−1/βg) with a constant C, deduced from dielectric loss data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. L. Leslie-Pelecky and N. O. Birge, Phys. Rev. Lett. 72, 1232 (1994); — Phys. Rev. B 18, 13 250 (1994).

    Google Scholar 

  2. U. T. Höchli, K. Knorr, and A. Loidl, Adv. Phys. 39, 405 (1990).

    Google Scholar 

  3. A. Loidl and R. Böhmer, in: Disorder Effects on Relaxational Processes: Glasses, Polymers, Proteins, ed. by R. Richert & A. Blumen (Springer-Verlag, Berlin 1994) p. 659.

    Google Scholar 

  4. R. Brand, P. Lukenheimer, U. Schneider, and A. Loidl, Phys. Rev. Lett. 82, 1951 (1999); — Phys. Rev. B 56, R5713 (1997).

    Google Scholar 

  5. N. S. Sullivan et al., Phys. Rev. B 17, 5016 (1978).

    Google Scholar 

  6. A. B. Harris and H. Meyer, Canad. J. Phys. 63, 3 (1985).

    Google Scholar 

  7. K. Binder and J. D. Reger, Adv. Phys. 41, 547 (1992).

    Google Scholar 

  8. C. Bostoen and K. H. Michel, Phys. Rev. B 43, 4415 (1991).

    Google Scholar 

  9. B. Tadić, R. Pirc, and R. Blinc, Phys. Rev. B 55, 816 (1997).

    Google Scholar 

  10. R. Pirc, B. Tadić, and R. Blinc, Physica A 185, 322 (1992); — Phys. Rev. B 36, 8607 (1987).

    Google Scholar 

  11. V. B. Kokshenev, Solid State Commun. 104, 1 (1994); — Phys. Rev. B 53, 2191 (1996).

    Google Scholar 

  12. V. B. Kokshenev, Solid State Commun. 55, 143 (1985); — Sov. J. Low Temp. Phys. 13, 195 (1987).

    Google Scholar 

  13. R. Blinc et al., Phys. Rev. B 52, 15 217 (1995).

    Google Scholar 

  14. K. Kim and N. S. Sullivan, J. Low Temp. Phys. 114, 173 (1999).

    Google Scholar 

  15. W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

    Google Scholar 

  16. R. Böhmer et al., J. Chem. Phys. 99, 4201 (1993).

    Google Scholar 

  17. J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

    Google Scholar 

  18. V. B. Kokshenev, Physica A 262, 88 (1999).

    Google Scholar 

  19. J. Souletie and D. Bertrand, J. Phys. I (Paris) 1, 1627 (1991).

    Google Scholar 

  20. I. A. Campbell et al., Phys. Rev. B 37, 3825 (1988).

    Google Scholar 

  21. V. B. Kokshenev, Phys. Rev. E 57, 1187 (1998).

    Google Scholar 

  22. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Google Scholar 

  23. J. Colmenero, Physica A 201, 38 (1993); — Phys. Rev. Lett. 69, 478 (1992).

    Google Scholar 

  24. G. Zumofen, J. Klafter, and A. Blumen in: Disorder Effects on Relaxational Processes: Glasses, Polymers, Proteins, ed. by R. Richert & A. Blumen (Springer-Verlag, Berlin 1994) p. 251.

    Google Scholar 

  25. K. L. Ngai, in: Disorder Effects on Relaxational Processes: Glasses, Polymers, Proteins, ed. by R. Richert & A. Blumen (Springer-Verlag, Berlin 1994) p. 89.

    Google Scholar 

  26. J. P. Bouchaud and H. Orland, J. Stat. Phys. 61, 877 (1990); J. Vilain et al., J. Phys. C 16, 1553 (1983).

    Google Scholar 

  27. V. B. Kokshenev, J. Low Temp. Phys. 111, 489 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokshenev, V.B., Sullivan, N.S. Mechanisms of Primary Relaxation near Orientational-Glass and Structural-Glass Transitions. Journal of Low Temperature Physics 122, 224–413 (2001). https://doi.org/10.1023/A:1004817321469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004817321469

Keywords

Navigation