Skip to main content
Log in

Effect of rubber interlayers on the fracture of glass bead/epoxy composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effectiveness of rubber interlayers between inorganic particles and polymer matrix for toughening has been a controversial subject. In this research, a series of rubber-encapsulated glass beads and its epoxy composites were prepared, and underlying mechanisms which can connect material parameters related with rubber interlayers with energy dissipation mechanisms, were investigated. The critical stress intensity factor (K IC) and critical strain energy release rate (G IC) of rubber-encapsulated glass bead filled epoxies were found to insignificantly depend on the existence and thickness of rubber interlayers. Microscopy studies on fracture process identified four different micro-mechanical deformations which can dissipate fracture energy: step formation, micro-shear banding, debonding of glass beads, and diffuse matrix shear yielding. It was found that the first two became less extensive and the others became more extensive as the thickness of rubber interlayers increases. This offsetting effect of micro-mechanical deformations seems to be the reason for the absence of significant toughening effect of rubber interlayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Kinloch and R. J. Young, “Fracture Behavior of Polymers” (Elsevier Applied Science, 1985).

  2. C. Vipulanandan and S. Mebarkia, J. Appl. Polym. Sci. 50 (1993) 1159.

    Google Scholar 

  3. L. Nicolais, E. Drioli and R. F. Landel, Polymer 14 (1973) 21.

    Google Scholar 

  4. A. J. Kinloch, D. L. Maxwell and R. J. Young, J. Mater. Sci. 20 (1985) 4169.

    Google Scholar 

  5. A. C. Moloney, H. H. Kausch, T. Kaiser and H. R. Beer, ibid. 22 (1987) 381.

    Google Scholar 

  6. R. J. Young, D. L. Maxwell and A. J. Kinloch, ibid. 21 (1986) 380.

    Google Scholar 

  7. H. Zhang and L. A. Berglund, Polym. Eng. Sci. 33 (1993) 100.

    Google Scholar 

  8. V. A. Matonis and N. C. Small, ibid. 9 (1969) 90.

    Google Scholar 

  9. L. J. Broutman and B. D. Agarwal, ibid. 14 (1974) 581.

    Google Scholar 

  10. G. F. Abate and D. Heikens, Polym. Comm. 24 (1983) 137.

    Google Scholar 

  11. J. Hilborn, J. Bidaux and J. E. Manson, Polymer Preprint 34 (1993) 639.

    Google Scholar 

  12. Y. G. Lin, J. F. Gerard, J. Y. Cavaille, H. Sautereau and J. P. Pascault, Polym. Bull. 17 (1987) 97.

    Google Scholar 

  13. C. Scott, H. Ishida and F. H. J. Maurer, J. Mater. Sci. 22 (1987) 3963.

    Google Scholar 

  14. J. Kolarik and J. Jancar, Polymer 33 (1992) 4961.

    Google Scholar 

  15. N. Amdouni, H. Sautereau and J. F. Gerard, J. Appl. Polym. Sci. 45 (1992) 1799; ibid. 46 (1992) 1723.

    Google Scholar 

  16. N. Amdouni, H. Sautereau, J. F. Gerard, F. Fernagut, G. Coulon and J. M. Lefebvre, J. Mater. Sci. 25 (1990) 1435.

    Google Scholar 

  17. M. E. J. Dekkers, J. P. M. Dormans and D. Heikens, Polym. Comm. 26 (1985) 145.

    Google Scholar 

  18. T. Sugawara and T. Matsuda, Macromolecules 27 (1994) 7809.

    Google Scholar 

  19. B. Pukanszky, F. Tudos, J. Kolarik and F. Lednicky, Polym. Compos. 11 (1990) 98.

    Google Scholar 

  20. J. Kolarik, F. Lednicky, J. Jancar and B. Pukanszky, ibid. 31 (1990) 201.

    Google Scholar 

  21. J. Jancar and A. T. Dibenedetto, J. Mater. Sci. 29 (1994) 4651.

    Google Scholar 

  22. D. Benderly, A. Siegmann and M. Narkis, Polymer Composites 17 (1996) 86.

    Google Scholar 

  23. R. Rothon, “Particulate-filled Polymer Composites” (Longman Scientific & Technical, 1995).

  24. E. P. Plueddemann, “Silane Coupling Agent” (Plenum, New York, 1982).

    Google Scholar 

  25. J. Spanoudakis and R. J. Young, J. Mater. Sci. 19 (1984) 473; ibid. 19 (1984) 487.

    Google Scholar 

  26. A. C. Moloney, H. H. Kausch and H. R. Stieger, ibid. 18 (1983) 208.

    Google Scholar 

  27. S. Sahu and L. J. Broutman, Polym. Eng. Sci. 12 (1972) 91.

    Google Scholar 

  28. L. J. Broutman and S. Shau, Mater. Sci. Eng. 8 (1971) 98.

    Google Scholar 

  29. A. Wambach, K. Trachte and A. Dibenedetto, J. Composite Materials 2 (1968) 266.

    Google Scholar 

  30. F. F. Lange, Phil. Mag. 22 (1970) 983.

    Google Scholar 

  31. F. F. Lange and K. C. Radford, J. Mater. Sci. 6 (1971) 1197.

    Google Scholar 

  32. A. G. Evans, Phil. Mag. 26 (1972) 1327.

    Google Scholar 

  33. R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 12 (1977) 684.

    Google Scholar 

  34. D. J. Green, P. S. Nicholson and J. D. Embury, ibid. 12 (1977) 987; ibid. 14 (1979) 1413; ibid. 14 (1979) 1657.

    Google Scholar 

  35. H. Gao and J. R. Rice, Int. Journ. of Fracture 33 (1987) 155.

    Google Scholar 

  36. G. Perrin and J. R. Rice, J. Mech. Phys. Solids 42 (1994) 1047.

    Google Scholar 

  37. H. J. Sue and A. F. Yee, J. Mater. Sci. 28 (1993) 2975.

    Google Scholar 

  38. R. A. Pearson and A. F. Yee, ibid. 21 (1986) 2475.

    Google Scholar 

  39. A. S. Holik, R. P. Kambour, S. Y. Hobbs and D. G. Fink, Microstruct. Sci. 7 (1979) 367.

    Google Scholar 

  40. L. C. Sawyer and D. T. Grubb, “Polymer Microscopy” (Chapman and Hall, New York, 1987).

    Google Scholar 

  41. R. A. Pearson and A. F. Yee, J. Mater. Sci. 24 (1989) 2571.

    Google Scholar 

  42. C. J. Simmons and D. H. El-Bayoumi, “Experimental Techniques of Glass Science” (American Ceramic Society, Westerville, 1993).

    Google Scholar 

  43. O. Ishai and L. J. Cohen, Int J. Mech. Sci. 9 (1967) 539.

    Google Scholar 

  44. A. S. Argon, R. D. Andrews, J. A. Godrick and W. Whitney, J. Appl. Phys. 39 (1968) 1899.

    Google Scholar 

  45. P. B. Bowden, Phil. Mag. 25 (1970) 455.

    Google Scholar 

  46. P. B. Bowden and S. Raha, ibid. 25 (1970) 463.

    Google Scholar 

  47. J. Lee, Ph.D. thesis, The University of Michigan, 1998.

  48. J. Lee and A. F. Yee, to be published.

  49. H. H. Kausch, “Polymer Fracture” (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  50. J. N. Goodier, J. Appl. Mech. 55:A39 (1933) 39.

    Google Scholar 

  51. T. W. Clyne and P. J. Withers, “An Introduction to Metal Matrix Composites” (Cambridge University, NewYork, 1993) p. 166.

    Google Scholar 

  52. C. H. Wang, Engineering Fracture Mechanics 56 (1997) 77.

    Google Scholar 

  53. T. S. Chow and J. C. Wilson, J. Polym. Sci. B 16 (1978) 967.

    Google Scholar 

  54. H. Wang, S. Li, H. Zhou, T. Yu and X. Jin, Polym. Eng. Sci. 32 (1992) 678.

    Google Scholar 

  55. H. Wang, S. Li and T. Yu, ibid. 33 (1993) 474.

    Google Scholar 

  56. A. Kuske and G. Robertson, “Photoelastic Stress Analysis” (John Wiley & Sons, 1974).

  57. J. W. Dally and W. F. Riley, “Experimental Stress Analysis” (McGraw-Hill, New York, 1965).

    Google Scholar 

  58. C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).

    Google Scholar 

  59. L. S. Sigl, P. A. Mataga, B. J. Dalgleish, R. M. Mcmeeking and A. G. Evans, Acta Metall. 36 (1988) 945.

    Google Scholar 

  60. R. A. Pearson and A. F. Yee, J. Mater. Sci. 26 (1991) 3828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert F. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Yee, A.F. Effect of rubber interlayers on the fracture of glass bead/epoxy composites. Journal of Materials Science 36, 7–20 (2001). https://doi.org/10.1023/A:1004814002344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004814002344

Keywords

Navigation