Polymers in hernia repair–common polyester vs. polypropylene surgical meshes


Within the last years meshes have become essential for the repair ofabdominal wall hernias. While the type of mesh obviously influencesthe clinical result, the selection of the best suitablemesh-modification should have favourable effects onto the rate ofcomplications. Available surgical meshes mainly differ in the typeand amount of the basic polymers. The most common meshes are madeeither out of monofilament polypropylene (PP) or multifilamentpolyester (PET). In the following contribution we studied thefunctional and histological results of standard and commerciallyavailable surgical meshes: a standard heavyweight, large pore-sizedPP-mesh (Prolene®), a heavyweight, large pore-sized PET-mesh(Parietex®, coated with bovine collagen) and a low weightsmall pore-sized PET-mesh (Mersilene®) in a standardised ratmodel. The meshes are studied by three dimensional stereography,tensiometry, light-(LM) and transmission electron microscopy (TEM),as well as morphometry over implantation intervals of 3, 7, 14, 21and 90 days. The results proved marked differences between thetested meshes in regard to textile properties, the mechanicalfunction (tensile strength, abdominal wall mobility), as well as thehistologically proved tissue reaction. Both heavyweight meshes (PPand PET) revealed an enormous and most similar strength whereas thelow weight PET-mesh primarily showed a considerable increase offlexibility. Despite their different structures and their diversehistological response all tested meshes led to a similar andsignificant reduction of the abdominal wall flexibility. However, thelocal tissue response of the interface mesh/recipient tissuesrevealed a significant reduction of the acute inflammatory activity anda significant decrease of connective tissue formation in the case ofthe low weight PET-mesh Mersilene® compared to both heavyweightmesh-modifications. Mersilene® showed an excellent andrelatively inert tissue reaction of the interface compared toProlene® and Parietex®. Modifications of the mesh-structure(e.g. larger pores) should improve the functional results, inparticular, abdominal wall flexibility. However, the use of PET inhernia surgery is at least questionable in respect to the obligatelong-term degradation of this polymer.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. K. Amid, A. G. Shulman and I. L. Lichtenstein, Am. Surg. 60 (1994) 934.

    Google Scholar 

  2. 2.

    P. K. Amid, A. G. Shulman, I. L. Lichtenstein and M. Hakakha, Langenbecks Arch Chir 379 (1994) 168.

    Google Scholar 

  3. 3.

    D. J. Waldrep, M. M. Shabot and J. R. Hiatt, Am. Surg. 59 (1993) 716.

    Google Scholar 

  4. 4.

    D. Mclanahan, L. T. King, C. Weems, M. Novotney and K. Gibson, Am. J. Surg. 173 (1997) 445.

    Google Scholar 

  5. 5.

    K. Vestweber, F. Lepique, F. Haaf, M. Horatz and A. Rink, Zentralblatt f¨ur Chirurgie 122 (1997) 885.

    Google Scholar 

  6. 6.

    A. W. Trupka, L. Schweiberer, K. Hallfeldt and H. Waldner, Zentralbl Chir 122 (1997) 879.

    Google Scholar 

  7. 7.

    G. E. Leber, J. L. Garb, A. I. Alexander and W. P. Reed, Arch. Surg. 133 (1998) 378.

    Google Scholar 

  8. 8.

    R. G. Molloy, K. T. Moran, R. P. Waldron, M. P. Brady and W. O. Kirwan, Br. J. Surg. 78 (1991) 242.

    Google Scholar 

  9. 9.

    R. P. Bleichrodt, R. K. Simmermacher, B. Van DER LEI and J. M. Schakenraad, Surg. Gynecol. Obstet. 176 (1993) 18

    Google Scholar 

  10. 10.

    H. S. Matloub, P. Jensen, B. K. Grunert, J. R. Sanger and N. J. Yousif, Ann. Plast. Surg. 29 (1992) 508.

    Google Scholar 

  11. 11.

    M. H. Seelig, R. Kasperk, L. Tietze and V. Schumpelick, Chirurg 66 (1995) 739.

    Google Scholar 

  12. 12.

    G. J. Morris Stiff and L. E. Hughes, J. Am. Coll. Surg. 186 (1998) 352.

    Google Scholar 

  13. 13.

    P. Amid, Hernia 1 (1997) 5.

    Google Scholar 

  14. 14.

    B. Klosterhalfen, U. Klinge and V. Schumpelick, Biomaterials 19 (1998) 2235.

    Google Scholar 

  15. 15.

    U. Klinge, J. Conze, W. Limberg, C. Brucker, A. P. Ottinger and V. Schumpelick, Chirurg 67 (1996) 229.

    Google Scholar 

  16. 16.

    U. Klinge, A. Prescher, B. Klosterhalfen and V. Schumpelick, ibid. 68 (1997) 293.

    Google Scholar 

  17. 17.

    U. Klinge, B. Klosterhalfen, J. Conze, W. Limberg, B. Obolenski, A. P. Öttinger and V. Schumpelick, Eur. J. Surg. 164 (1998) 951.

    Google Scholar 

  18. 18.

    U. Klinge, M. MÑller, C. BrÑcker and V. Schumpelick, Hernia 2 (1998) 11.

    Google Scholar 

  19. 19.

    B. Klosterhalfen, U. Klinge, U. Henze, R. Bhardwaj, J. Conze and V. Schumpelick, Langenbecks Arch Chir 382 (1997) 87.

    Google Scholar 

  20. 20.

    M. E. Arregui, C. J. Davis, O. Yucel and R. F. Nagan, Surg. Laparosc. Endosc. 2 (1992) 53.

    Google Scholar 

  21. 21.

    H. Kjeldsen and B. N. Gregersen, Scand. J. Plast. Reconstr. Surg. 20 (1986) 119.

    Google Scholar 

  22. 22.

    A. Fernandez and O. L. Kh, Surg. Laparosc. Endosc. 4 (1994) 425.

    Google Scholar 

  23. 23.

    T. S. Layman, R. P. Burns, K. E. Chandler, W. L. Russell and R. G. Cook, Am. Surg. 59 (1993) 13.

    Google Scholar 

  24. 24.

    K. K. Nagy, J. J. Fildes, C. Mahr, R. R. Roberts, S. M. Krosner, K. T. Joseph and J. Barrett, ibid. 62 (1996) 331.

    Google Scholar 

  25. 25.

    V. Schumpelick and G. Kingsnorth, “Incisional Hernia of the Abdominal Wall,” 1st ed. (Berlin, Springer-Verlag, 1999).

    Google Scholar 

  26. 26.

    G. E. Wantz, Surg. Gynecol. Obstet. 172 (1991) 129.

    Google Scholar 

  27. 27.

    Idem., Arch. Surg. 133 (1998) 1137.

    Google Scholar 

  28. 28.

    J. M. Bellon, J. Bujan, L. Contreras and A. Hernando, Biomaterials 16 (1995) 381.

    Google Scholar 

  29. 29.

    U. Klinge, J. Conze, B. Klosterhalfen, W. Limberg, B. Obolenski, A. P. Ottinger and V. Schumpelick, Langenbecks Arch Chir 381 (1996) 323.

    Google Scholar 

  30. 30.

    S. Lipton, J. Estrin and I. Nathan, J. Am. Coll. Surg. 178 (1994) 595.

    Google Scholar 

  31. 31.

    M. Amgwerd, M Decurtins, F Largadèr, Helv Chir Acta 59 (1992) 345.

    Google Scholar 

  32. 32.

    A. Loh, J. S. Rajkuma and L. M. South, Ann. Royal Coll. Surg. Engl. 74 (1992) 100.

    Google Scholar 

  33. 33.

    R. C. Read and G. Yoder, Arch. Surg. 124 (1989) 485.

    Google Scholar 

  34. 34.

    D. M. Grace, Can. J. Surg. 30 (1987) 282.

    Google Scholar 

  35. 35.

    L. Tang, T. P. Ugarova, E. F. Plow and J. W. Eaton, J. Clin. Invest. 97 (1996) 1329.

    Google Scholar 

  36. 36.

    B. M. Soares, M. W. King, Y. Marois, R. G. Guidoin, G. Laroche, J. Charara and J. F. Girard, J. Biomed. Mater. Res. 32 (1996) 259.

    Google Scholar 

  37. 37.

    R. Smith, C. Olivier and D. Williams, ibid. 21 (1987) 991.

    Google Scholar 

  38. 38.

    K. Schwertassek and J. Dvorak, Biomed Technik 17 (1972) 105.

    Google Scholar 

  39. 39.

    J. Maarek, R. Guidon, M. Aubin and R. Prud'homme, J. Biomed. Mat. Res. 18 (1984) 881.

    Google Scholar 

  40. 40.

    G. Riepe, J. Loos, H. Imig, A. Schroder, E. Schneider, J. Petermann, A. Rogge, M. Udwig, A. Schenke, R. Nassutt, N. Chakfe and M. Morlock, Eur. J. Vasc. Endovasc. Surg. 13 (1997) 540.

    Google Scholar 

  41. 41.

    E. Trabucchi, F. Corsi, C. Meinardi, P. Cellerino, R. Allevi and D. Foschi, Hernia 2 (1998) 107.

    Google Scholar 

  42. 42.

    B. Klosterhalfen, U. Klinge, B. Hermanns and V. Schumpelick, Chirurg 71 (2000) 43.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klosterhalfen, B., Klinge, U., Schumpelick, V. et al. Polymers in hernia repair–common polyester vs. polypropylene surgical meshes. Journal of Materials Science 35, 4769–4776 (2000). https://doi.org/10.1023/A:1004812410141

Download citation


  • Tensile Strength
  • Polypropylene
  • Hernia Repair
  • Inflammatory Activity
  • Tissue Reaction