Skip to main content
Log in

Microbiological Processes in a High-Temperature Oil Field

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Thermophilic sulfate-reducing bacteria (SRB) oxidizing lactate, butyrate, and C12–C16 n-alkanes of oil at a temperature of 90°C were isolated from samples of water and oil originating from oil reservoirs of the White Tiger high-temperature oil field (Vietnam). At the same time, no thermophiles were detected in the injected seawater, which contained mesophilic microorganisms and was the site of low-temperature processes of sulfate reduction and methanogenesis. Thermophilic SRB were also found in samples of liquid taken from various engineering reservoirs used for oil storage, treatment, and transportation. These samples also contained mesophilic SRB, methanogens, aerobic oil-oxidizing bacteria, and heterotrophs. Rates of bacterial production of hydrogen sulfide varied from 0.11 to 2069.63 at 30°C and from 1.18 to 173.86 at 70°C μg S/(l day); and those of methane production, varied from 58.4 to 100 629.8 nl CH4/(l day) (at 30°C). The sulfur isotopic compositions of sulfates contained in reservoir waters and of hydrogen sulfide of the accompanying gas indicate that bacterial sulfate reduction might be effective in the depth of the oil field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rozanova, E., Nazina, T., Mats, A., and Kulik, E., Development of Hydrocarbon-Oxidizing Bacteria in Model Oil Strata and Production of Oil-Releasing Compounds, Doklady po geokhimii i fiziko-khimicheskim voprosam razvedki i dobychi nefti i gaza (Reports Concerning Geochemical and Physicochemical Issues Related to Oil and Gas Prospecting and Extraction), 1988, Solnok (Hungary), vol. III, pp. 426–434.

    Google Scholar 

  2. Nazina, T.N., Rozanova, E.P., and Kuznetsov, S.I., Microbial Oil Transformation by Methane and Hydrogen Sulfide Formation, Geomicrobiol. J., 1985, vol. 4, no. 2, pp. 103–130.

    Google Scholar 

  3. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F.A., Jannasch, H.W., and Widdel, F., Anaerobic Oxidation of Hydrocarbons in Crude Oil by New Types of Sulfate-Reducing Bacteria, Nature, 1994, vol. 372, pp. 455–458.

    Google Scholar 

  4. Heider, J., Spormann, A.M., Beller, H.R., and Widdel, F., Anaerobic Bacterial Metabolism of Hydrocarbons, FEMS Microbiol. Rev., 1999, vol. 22, pp. 459–373.

    Google Scholar 

  5. Mago, M., O llivier, B., and Patel, B.K., Thermophiles from Petroleum Reservoirs, Int. Conf. Thermophiles'98, 6–11 Sept., 1998, Brest, France, B-06.

  6. Belyaev, S.S., Rozanova, E.P., Borzenkov, I.A., Charakhch'yan, I.A., Miller, Yu.M., Sokolov, M. Yu., and Ivanov, M.V., Peculiarities of Microbial Processes in a Water-Flooded Oil Field in the Central Ob Region, Mikrobiologiya, 1990, vol. 59, no. 6, pp. 1075–1082.

    Google Scholar 

  7. Beeder, J., Nilsen, R.K., Rosnes, J.T., Torsvik, T., and Lien, T., Archaeoglobus fulgidus Isolated from Hot North-Sea Oil Field Waters, Appl. Environ. Microbiol., 1999, vol. 60, no. 4, pp. 1227–1237.

    Google Scholar 

  8. Areshev, E.G., Dong, Ch.L., and Kireev, F.A., The Oil and Gas Content of the Base Granitoid Rock by the Example of the White Tiger Field, Neftyanoe Khoz-vo, 1996, no. 8, pp. 50–58.

    Google Scholar 

  9. Widdel, F., Anaerober Abbau von Fettsüren und Benzoesüre durch neu isolierte Arten Sulfat-reduzierender Bakterien, Thesis, Göttingen: Univ. Göttingen, 1980, pp. 7–147.

    Google Scholar 

  10. Trüper, H.G. and Schlegel, H.G., Sulphur Metabolism in Thiorhodaceae: I. Quantitative Measurements on Growing Cells of Chromatium okenii, Antonie van Leeuwenhoek, 1964, vol. 30, no. 3, pp. 225–238.

    Google Scholar 

  11. Milekhina, E.I., Borzenkov, I.A., Zvyagintseva, I.S., Kostrikina, N.A., and Belyaev, S.S., Characterization of Hydrocarbon-Oxidizing Rhodococcus erythropolis Strain Isolated from an Oil Field, Mikrobiologiya, 1998, vol. 67, no. 3, pp. 328–332.

    Google Scholar 

  12. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolf, R.S., Methanogens: Reevaluation of Unique Biological Group, Microbiol. Rev., 1979, vol. 43, pp. 260–296.

    Google Scholar 

  13. Oremland, R.S. and Capone, O.G., Use of Specific Inhibition in Biogeomicrobial Ecology, Adv. Microbiol. Ecol., 1988, vol. 10, pp. 285–384.

    Google Scholar 

  14. Borzenkov, I.A., Belyaev, S.S., Miller, Yu. M., Davydova, I.A., and Ivanov, M.V., Methanogenesis in the Highly Mineralized Stratal Waters of the Bondyuzhskoe Oil Field, Mikrobiologiya, 1997, vol. 66, no. 1, pp. 122–129.

    Google Scholar 

  15. Laurinavichus, K.K. and Belyaev, S.S., Radioisotopic Determination of the Rate of Microbial Production of Methane, Mikrobiologiya, 1978, vol. 47, no. 6, pp. 1115–1117.

    Google Scholar 

  16. Nazina, T.N., Rozanova, E.P., Belyaev, S.S., and Ivanov, M.V., Khimicheskie i mikrobiologicheskie issledovaniya plastovykh zhidkostei i kernov neftyanykh mestorozhdenii (Chemical and Microbiological Investigations of Stratal Fluids and Cores from Oil Fields), Pushchino: 1988.

  17. Reznikov, A.A. and Mulikovskaya, E.P., Metody analiza prirodnykh vod (Methods for the Analysis of Natural Waters), Moscow: Izd. literatury po geologii i okhrane nedr, 1954.

    Google Scholar 

  18. Isaksen, M.F., Bak, F., and Jorgensen, B.B., Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediments, FEMS Microbiol. Ecol., 1994, vol. 14, no. 1, pp. 1–8.

    Google Scholar 

  19. Nilsen, R.K., Beeder, T., Thorstensen, T., and Torsvik, T., Distribution of Thermophilic Marine Sulfate Reduction in North Sea Oil Field Waters and Oil Reservoir, Appl. Environ. Microbiol., 1996, vol. 63, pp. 1793–1798.

    Google Scholar 

  20. Bluche, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., and Stetter, K.O., Pyrolobus fumaris, gen. nov. and sp. nov., Represents a Novel Group of Archaea, Extending the Upper Temperature Limit for Life to 113°C, Extremophiles, 1997, vol. 1, pp. 14–21.

    Google Scholar 

  21. Jorgensen, B.B., Isaksen, M.F., and Jannasch, H.W., Bacterial Sulfate Reduction above 100°C in Deep-Sea Vent Sediments, Science, 1992, vol. 258, pp. 1756–1757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozanova, E.P., Borzenkov, I.A., Tarasov, A.L. et al. Microbiological Processes in a High-Temperature Oil Field. Microbiology 70, 102–110 (2001). https://doi.org/10.1023/A:1004809308305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004809308305

Navigation