Skip to main content
Log in

Dendrite morphologies of the metastable phase from undercooled Fe-30at % Co melts and its stabilities

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Five typical dendrite morphologies of the metastable bcc phase fromundercooled Fe-30 at % Co melt have been observed by TEMtechnique. The morphologies of the metastable phase exhibitedwell-developed dendrite with the primary trunk and second arms,well-developed second arms, radiated structure, lath structure,and bifurcated structure. The crystal growth mode and theformation of different dendrite morphologies were discussed onthe basis of the morphological patterns from undercooled melts.In the mean while, the breakage mode for the primary dendritewas suggested according to the observation of microstructures ofthe alloy solidified at various undercoolings. The EDS (EnergyDispersive Spectrum) analysis has confirmed enrichment of thesolute Co in metastable dendrite cores in comparison to thatpredicted from the view of equilibrium solidification. Furtherinvestigation after annealing showed that the solute diffusioncontrolled the stability of the metastable phase; thedisappearance of dendrite morphologies was mainly attributed tothe constituent homogenization within dendrite cores and thedecrease in the number of dendrite cores was chiefly owing tothe solute diffusion between dendrite cores and the subsequentlysolidified equilibrium phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Merz and T. Z. Kattamis, Metall. Trans. A. 8A (1977) 295.

    Google Scholar 

  2. T. Z. Kattamis, NASA CP-2337, 1984, 15.

  3. M. G. Chu, Y. Shiohara and M. C. Flemings,Metall. Trans. A. 15A (1984) 1303.

    Google Scholar 

  4. T. Z. Kattamis and M. C. Flemings, Mod. Cast. 67 (1967) 97.

    Google Scholar 

  5. Y. Wu, T. J. Pioccone, Y. Shiohara and M. C. Flemings: Metall. Trans. A. 18A (1987) 915.

    Google Scholar 

  6. J. H. Perepezko, Mater. Sci. Eng. 65 (1984) 125.

    Google Scholar 

  7. R. E. Cech, Trans. AIME. 206 (1956) 585.

    Google Scholar 

  8. D. M. Herlach, Mater. Sci. Eng. R12 (1994) 240.

    Google Scholar 

  9. R. Willnecker, D. M. Herlach and B. Feuerbacher, Appl. Phys. Lett. 49 (1986) 1339.

    Google Scholar 

  10. Toshihiko Koseki and Merton C. Flemings,Metall. Mater. Trans. A. 26A (1995) 2991.

    Google Scholar 

  11. Merton C. Flemings Idem., ibid. 27A (1996) 3226.

    Google Scholar 

  12. Merton C. Flemings Idem., ibid. 28A (1997) 2385.

    Google Scholar 

  13. D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53 (1984) 1951.

    Google Scholar 

  14. X. Z. Li and K. H. Kuo, J. Mater. Res. 8 (1993) 2499.

    Google Scholar 

  15. D. M. Herlach, F. Gillessen, T. Volkmann, M. Wollgarten and K. Urban,Phys. Rev. B. 46 (1992) 5203.

    Google Scholar 

  16. J. Schroers, D. Holland-moritz, D. M. Herlach, B. Grushko and K. Urban, Mater. Sci. Eng. A226–228 (1997) 990.

    Google Scholar 

  17. D. Holland-moritz, D.M. Herlach and K. Urban, Appl. Phys. Lett. 71 (1993) 1196.

    Google Scholar 

  18. D. M. Herlach, B. Feuerbacher and E. Schleip, Mater. Sci. Eng. A133 (1991) 795.

    Google Scholar 

  19. Li Mingjun, Yang Gencang and Zhou Yaohe, Metall. Mater. Trans. A. 30A (1999) 2941.

    Google Scholar 

  20. Li mingjun, Lin xin, Song guangsheng, Yang gencang and Zhou yaohe, Mater. Sci. Eng. A268 (1999) 90.

    Google Scholar 

  21. W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35 (1964) 444.

    Google Scholar 

  22. R. Trivedi and W. Kurz, Acta Metall. 34 (1986) 1663.

    Google Scholar 

  23. A. Ludwig, Acta Metall. Mater. 39 (1991) 2795.

    Google Scholar 

  24. Xuezhi zhang, Mater. Sci. Eng. A247 (1998) 214.

    Google Scholar 

  25. Li Mingjun, Yang Gencang and Zhou Yaohe, ibid. A270 (1999) 267.

    Google Scholar 

  26. W. J. Boettinger, S. R. Coriell and R. Trivedi,in “Rapid Solidification Processing: Principles and Technologies IV,” edited by R. Mehrabian and P.A. Parrish (Claitor's, Baton Rouge, LA, 1988) p. 13.

    Google Scholar 

  27. M. Schwarz, A. Karma, K. Eckler and D. M. Herlach, Phys. Rev. Lett. 73 (1994) 1380.

    Google Scholar 

  28. Li Mingjun, Yue Yufang, Song Guangshang, Yang Gencang and Zhou Yaohe, Acta Metall. Sinica. 35 (1999) 517.

    Google Scholar 

  29. M. J. Aziz, J. Appl. Phys. 53 (1982) 1158.

    Google Scholar 

  30. E. A. Brandes, “Smithells Metals Reference Book,” 6th ed., (Landen, Butterworths & Co. Ltd., 1983) p. 13.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingjun, L., Gencang, Y. & Yaohe, Z. Dendrite morphologies of the metastable phase from undercooled Fe-30at % Co melts and its stabilities. Journal of Materials Science 35, 3069–3075 (2000). https://doi.org/10.1023/A:1004807600527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004807600527

Keywords

Navigation