Skip to main content
Log in

Effect of composition on ferroelectric properties of sol-gel derived lead bismuth titanate (PbBi4Ti4O15) thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bismuth layer-structured ferroelectric PbBi4Ti4O15(PBT) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol-gel spin coating and the effect of lead and bismuth concentration on phase transition, microstructure and ferroelectric property was investigated. Especially, the effect of non-stoichiometric compositions, that is, deficient concentration of Pb and excess concentration of Bi with respect to the stoichiometric composition, was examined. With an increase of lead and bismuth concentration, the pyrochlore phase was suppressed and PBT phase was developed. Large increases of 2P r and 2E c were also observed as lead and bismuth concentration increased. An improved ferroelectric property could be obtained by inserting a Bi-rich buffer layer between Pt electrode and Pb-rich PBT film. The PBT thin films with Bi-rich buffer layer showed homogeneous grain size distribution, good fatigue endurance up to 1 × 109 switching cycles, low relative permittivity of 270 and sufficient 2P r values of 15.7 μC/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Takayama, Y. Tomita, K. Iijimae and I. Ueda, Ferroelectrics 118 (1991) 325.

    Google Scholar 

  2. G. Yi, Z. Wu and M. Sayer, J. Appl. Phys. 64(5) (1988) 2717.

    Google Scholar 

  3. C. D. E. Lakeman, J. F. Campion and D. A. Payne, in “Ceramic Transactions Volume 25: Ferroic Materials: Design, Preparation and Characteristics,” edited by A. S. Bhalla et al. (the American Ceramic Society, Westerville, OH, 1992) p. 413.

    Google Scholar 

  4. B. T. Teowee, J. M. Boulton and D. R. Uhlmann, Mat. Res. Soc. Symp. Proc. 271 (1992) 345.

    Google Scholar 

  5. C. D. E. Lakeman and D. A. Payne, J. Amer. Ceram. Soc. 75(11) (1992) 3091.

    Google Scholar 

  6. B. A. Tuttle, J. A. Voigt and D. C. Goodnow, ibid. 76(6) (1993) 1537.

    Google Scholar 

  7. S. Okamura, Y. Yagi, K. Mori and G. Fujihashi, Jan. J. Appl. Phys. 36 (1997) 5889.

    Google Scholar 

  8. R. C. Buchanan and P. Chu, in “Ceramic Transactions Volume 55: Sol-gel Science and Technology,” edited by E. A. Pope et al. (the American Ceramic Society, Westerville, OH, 1995) p. 137.

    Google Scholar 

  9. P. C. Joshi, A. Manshingh, M. N. Kamalasanan and S. Chandra, J. Appl. Phys. Lett. 59(19) (1991) 4.

    Google Scholar 

  10. M. Azimi and P. K. Ghoshi, in “Ceramic Transactions Volume 43: Ferroic Materials:Design, Preparation and Characteristics,” edited by A. S. Bhalla et al. (the American Ceramic Society, Westerville, OH, 1995) p. 15.

    Google Scholar 

  11. C. A. Paz De Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. F. Scott, Nature 374(13) (1995) 627.

    Google Scholar 

  12. H. N. Al-Shareef, D. Dimos, W. L. Warren and B. A. Tuttle, J. Appl. Phys. 80(8), 15 (1996) 4573.

    Google Scholar 

  13. Y. Ito, M. Ushikubo, S. Yokoyama, H. Matsunaga, T. Atsuki, T. Yonezawa and K. Ogi, Jan. J. Appl. Phys. 35 (1996) 4925.

    Google Scholar 

  14. C. A. Paz De Araujo, J. D. Cuchiaro, M. C. Scott and L. D. McMillan: Int. Pat. no. WO93/12542 (June 24, 1993).

  15. G. A. Smollenski, V. A. Isupov and A. I. Agranovskaya, Soviet Physics—Solid State 3(3) (1961) 651.

    Google Scholar 

  16. J. A. Deverin, Ferroelectrics 19 (1978) 5.

    Google Scholar 

  17. E. C. Subbarao, J. Amer. Ceram. Soc. 4 (1962) 166.

    Google Scholar 

  18. I. Yi and M. Miyayama, Material Research Bulletin 32(10) (1997) 1349.

    Google Scholar 

  19. T. Takenaka, Ph.D. Thesis, Science University of Tokyo, 1984.

  20. T. Noguchi, Jan. J. Appl. Phys. 35 (1995) 4900.

    Google Scholar 

  21. T. Atsuki and K. Ogi, J. Appl. Phys. 34 (1995) 5096.

    Google Scholar 

  22. T. Mihara, C. A. Paz De Araujo, ibid. 34 (1995) 5233.

    Google Scholar 

  23. L. G. Hubert-Pfalzgraf, M. C. Massiani, J. C. Daran and J. Vaissermann, in “Better Ceramics Through Chemistry V,” edited by M. J. Hampden-Smith et al. (Material Research Society, Pittsburgh, PA, 1992) p. 135.

    Google Scholar 

  24. T. Kikuchi, A. Watanabe and K. Uchida, Mat. Res. Bull. 12 (1977) 299.

    Google Scholar 

  25. T. Kikuchi, ibid. 14 (1979) 1561.

    Google Scholar 

  26. M. Azuma, C. A. Paz De Araujo and L. D. McMillan, U. S. Patent no. 5,803,961 (1998).

  27. K. Okazaki, in “Ceramic Engineering for Dielectrics” (Gakkensha Publishing, Tokyo, 1992) p. 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, YI., Nagai, M., Miyayama, M. et al. Effect of composition on ferroelectric properties of sol-gel derived lead bismuth titanate (PbBi4Ti4O15) thin films. Journal of Materials Science 36, 1261–1269 (2001). https://doi.org/10.1023/A:1004806631161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004806631161

Keywords

Navigation