Skip to main content
Log in

Superconductivity, Upper Critical Field and Anomalous Normal State in CePd2Si2 Near the Quantum Critical Point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report resistivity measurements performed on a high quality single crystal of CePd2Si2 under hydrostatic pressure. At ambient pressure the de Haas–van Alphen effect has been also studied. Two different frequencies with weak angular dependence were detected with magnetic field lying in the basal plane, while another frequency was found with magnetic field parallel to the tetragonal c axis. Near the critical pressure, Pc∼27 kbar, where the antiferromagnetic transition vanishes, the normal state resistivity does not follow the usual Fermi-liquid (FL) behavior and is described by a T1.3 law, while just below Pc, the resistivity shows clearly separated spin wave and electron–electron contributions. At Pc, the FL form of ρ(T) is not restored even at magnetic field up to 6T. The first appearance of superconductivity is observed at P=19 kbar, and the critical temperature increases with pressure up to 27 kbar. The analysis of the upper critical field at Pc shows that the superconducting state is well described by a weak coupling, clean limit model with a slightly anisotropic orbital limit and a strongly anisotropic paramagnetic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Jaccard, K. Behnia, and J. Sierro, Physics Letters A 163, 475 (1992).

    Google Scholar 

  2. R. Movshovich et al., Phys. Rev. B 53, 8241 (1996).

    Google Scholar 

  3. I. R. Walker et al., Physica C 282, 303 (1997).

    Google Scholar 

  4. N. D. Mathur et al., Nature 394, 39 (1998).

    Google Scholar 

  5. F. M. Grosche et al., Physica B 223-224, 50 (1996).

    Google Scholar 

  6. S. Raymond and D. Jaccard, Phys. Rev. B 61, 8679 (2000).

    Google Scholar 

  7. S. Raymond et al., Solid State Commun. 112, 617 (1999).

    Google Scholar 

  8. See e.g., K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986) and references therein.

    Google Scholar 

  9. P. Link, D. Jaccard, and P. Lejay, Physica B 223-224, 303 (1996).

    Google Scholar 

  10. J. D. Thompson, R. D. Parks, and H. Borges, J. Magn. Magn. Mat. 54-57, 377 (1986).

    Google Scholar 

  11. P. Christ, W. Biberacher, H. Müller, and K. Andres, Solid State Comm. 91, 451 (1994).

    Google Scholar 

  12. H. Harima, private communication.

  13. S. K. Dhar and E. V. Sampathkumaran, Phys. Lett. A 121, 454 (1987).

    Google Scholar 

  14. C. Bergemann et al., Physica B 230-232, 348 (1997).

    Google Scholar 

  15. N. H. van Dijk et al., Phys. Rev. B 61, 8922 (2000).

    Google Scholar 

  16. See e.g., T. T. M Palstra, A. A. Menovsky, and J. A. Mydosh, Phys. Rev. B 33, 6527 (1986).

    Google Scholar 

  17. F. M. Grosche et al., Physica B 281-282, 3 (2000).

    Google Scholar 

  18. F. M. Grosche et al., preprint, cond-mat-9812133 (8 December, 1998).

  19. A. J. Millis, Phys. Rev. B 48, 7183 (1993).

    Google Scholar 

  20. T. Moriya and T. Takimoto, J. Phys. Soc. Japan 64, 960 (1995).

    Google Scholar 

  21. A. Rosch, Phys. Rev. Lett. 82, 4280 (1999).

    Google Scholar 

  22. S. R. Julian et al., J. Phys.: Condens Matter 8, 9675 (1996).

    Google Scholar 

  23. P. Gegenwart et al., Phys. Rev. Lett. 82, 1293 (1999).

    Google Scholar 

  24. C. H. Choi and J. A. Sauls, Phys. Rev. Lett. 66, 484 (1991).

    Google Scholar 

  25. F. Thomas et al., J. Low Temp. Phys. 102, 117 (1996).

    Google Scholar 

  26. J. P. Brison et al., Physica C 250, 128 (1995).

    Google Scholar 

  27. I. Sheikin et al., J. Low Temp. Phys. 118, 113 (2000).

    Google Scholar 

  28. L. Glemot et al., Phys. Rev. Lett. 82, 169 (1999).

    Google Scholar 

  29. B. H. Grier et al., J. Phys. C 21, 1099 (1988).

    Google Scholar 

  30. A. Severing et al., Phys. Rev. B 39, 4164 (1989).

    Google Scholar 

  31. Ch. Wälti et al., Phys. Rev. Lett. 84, 5616 (2000).

    Google Scholar 

  32. K. Hori and K. Miyake, to be submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikin, I., Steep, E., Braithwaite, D. et al. Superconductivity, Upper Critical Field and Anomalous Normal State in CePd2Si2 Near the Quantum Critical Point. Journal of Low Temperature Physics 122, 591–604 (2001). https://doi.org/10.1023/A:1004804117951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004804117951

Keywords

Navigation