Journal of Materials Science

, Volume 35, Issue 15, pp 3711–3717

The effect of heat-treatment on the grain-size of nanodisperse plasmathermal silicon nitride powder

  • J. Gubicza
  • J. Szépvölgyi
  • I. Mohai
  • G. Ribárik
  • T. Ungár


Nanodisperse silicon nitride has been synthesized by vapor phase reaction of silicon tetrachloride and ammonia in a thermal plasma reactor and crystallized at temperatures 1250, 1350, 1450 and 1500°C. The average grain-size and the dislocation density of the samples were determined by the recently developed modified Williamson-Hall and Warren-Averbach procedures from X-ray diffraction profiles. A new numerical method provided log-normal grain-size distributions from the size parameters derived from X-ray diffraction profiles. It has been shown that the average grain-size in the amorphous phase is lower than that observed in the crystalline fraction. On the other hand, the average grain-size in the crystalline fraction decreases up to 1450°C while it increases during heat-treatment at 1500°C. The size distribution and the area-weighted average grain-size obtained by X-rays were in good agreement with those determined by TEM and from the specific surface area, respectively. The dislocation density was found to be of the order of 1014 and 1015 m−2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. SzpÉvÖlgyi and I. Mohai, Ceram. Int. 25 (1999) 711.Google Scholar
  2. 2.
    G. Ziegler, J. Heinrich and G. WÖtting, J. Mat. Sci. 22 (1987) 3041.Google Scholar
  3. 3.
    G. Petzow and R. Sersale, Pure and Applied Chemistry 59 (1987) 1674.Google Scholar
  4. 4.
    J. SzÉpvÖlgyi and I. Mohai, in “Engineering Ceramics'96: Higher Reliability through Processing,” edited by G. N. Babini et al. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997) p. 89.Google Scholar
  5. 5.
    F. Cambier, A. Leriche, E. Gilbart, R. J. Brook and F. L. Riley, in “The Physics and Chemistry of Carbides, Nitrides and Borides,” edited by R. Freer (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990) p. 13.Google Scholar
  6. 6.
    C. E. Krill and R. Birringer, Phil. Mag. A 77 (1998) 621.Google Scholar
  7. 7.
    T. UngÁr and A. BorbÉly, Appl. Phys. Lett. 69 (1996) 3173.Google Scholar
  8. 8.
    T. UngÁr, S. Ott, P. Sanders, A. BorbÉly and J. R. Weertman, Acta Mater. 46 (1998) 3693.Google Scholar
  9. 9.
    T. UngÁr, I. Dragomir, Á. RÉvÉsz and A. BorbÉly, J. Appl. Cryst. 32 (1999) 992.Google Scholar
  10. 10.
    M. Wilkens, Phys. Stat. Sol. (a) 104 (1987) K1.Google Scholar
  11. 11.
    I. Groma, T. UngÁr and M. Wilkens, J. Appl. Cryst. 21 (1988) 47.Google Scholar
  12. 12.
    P. Klimanek and R. Kuzel Jr., ibid. 21 (1988) 59.Google Scholar
  13. 13.
    R. Kuzel Jr. and P. Klimanek, ibid. 21 (1988) 363.Google Scholar
  14. 14.
    T. UngÁr, A. BorbÉly, G. R. Goren-Muginstein, S. Berger and A. R. Rosen, Nanostructured Materials 11 (1999) 103.Google Scholar
  15. 15.
    J. SzpÉvÖlgyi and I. Mohai, J. Mater. Chem. 5 (1995) 1227.Google Scholar
  16. 16.
    J. SzpÉvÖlgyi, F. L. Riley, I. Mohai, I. Bertoti and E. Gilbart, ibid. 6 (1996) 1175.Google Scholar
  17. 17.
    C. P. Gazzara and D. R. Messier, Ceram. Bull. 56 (1977) 777.Google Scholar
  18. 18.
    N. Camuscu, D. P. Thompson and H. Mandal, J. European Ceram. Soc. 17 (1997) 599.Google Scholar
  19. 19.
    M. Wilkens and H. Eckert, Z. Naturforschung 19a (1964) 459.Google Scholar
  20. 20.
    B. C. Lippenca and M. A. Hermanns, Powd. Met. 7 (1961) 66.Google Scholar
  21. 21.
    A. Guinier, “X-ray Diffraction” (Freeman, San Francisco, CA, 1963).Google Scholar
  22. 22.
    T. UngÁr and G. Tichy, Phys. Stat. Sol. (a) 171 (1999) 425.Google Scholar
  23. 23.
    CH.-M. Wang, X. Pan, M. Ruehle, F. L. Riley and M. Mitomo, J. Mater. Sci. 31 (1996) 5281.Google Scholar
  24. 24.
    K. Rajan and P. Sajgalik, J. Am. Ceram. Soc. 17 (1997) 1093.Google Scholar
  25. 25.
    B. E. Warren, Progr. Metal Phys. 8 (1959) 147.Google Scholar
  26. 26.
    M. Rand, J. I. Langford and J. S. Abell, Phil. Mag. B 68 (1993) 17.Google Scholar
  27. 27.
    A. J. C. Wilson, “X-ray Optics” (Methuen, London 1962).Google Scholar
  28. 28.
    CH. D. Terwilliger and Y. M. Chiang, J. Am. Ceram Soc. 78 (1995) 2045.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J. Gubicza
    • 1
  • J. Szépvölgyi
    • 2
  • I. Mohai
    • 2
  • G. Ribárik
    • 1
  • T. Ungár
    • 3
  1. 1.Department of General PhysicsEötvös UniversityBudapestHungary
  2. 2.Research Laboratory of Materials and Environmental Chemistry, Chemical Research CenterHungarian Academy of SciencesBudapestHungary
  3. 3.Department of General PhysicsEötvös UniversityBudapestHungary

Personalised recommendations