Skip to main content
Log in

Some peculiarities of fracture of nanocrystalline nitride and boride films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fracture surfaces including those through indentations on different nanocrystalline boride/nitride films were investigated by FE-SEM, conventional SEM, and AFM. TiB2, TiN, Ti(B,N), AlN, and (Ti,Al)N films have been obtained by non-reactive r.f. magnetron sputtering. Deformation was realized by cleavage fracture and under a Vickers indentor. Two types of film fracture connected with homogeneous and inhomogeneous deformation are described and discussed. The analogy between the inhomogeneous deformation films image and the river pattern in the case of conventional ceramics is also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Edelstein and R. C. Kamarata (eds.), “Nanomaterials: Synthesis, Properties and Applications” (Institute of Physics, Bristol, 1996).

    Google Scholar 

  2. G.-M. Chow and N. I. Noskova (eds.), “Nanostructured Materials: Science & Technology” (Kluwer Academic Publishers, Dordrecht, 1998).

    Google Scholar 

  3. A. I. Gusev, “Nanocrystalline Materials: Preparation Methods and Properties” (Russian Academy of Sciences, Ekaterinburg, 1998) (in Russian).

    Google Scholar 

  4. R. A. Andrievski, J. Mater. Sci. 32 (1997) 4463.

    Google Scholar 

  5. E. Arzt, Acta Mater. 46 (1998) 5611.

    Google Scholar 

  6. Z. Li, S. Ramasami, H. Hahn and R. Siegel, Mater. Lett. 6 (1988) 195.

    Google Scholar 

  7. K. J. Ma, A. Bloyce, R. A. Andrievski and G. V. Kalinnikov, Surf. Coat. Technol. 94/95 (1997) 322.

    Google Scholar 

  8. R. A. Andrievski, J. Solid State Chem. 133 (1997) 249.

    Google Scholar 

  9. Idem., Nanostruct. Mater. 9 (1997) 607.

    Google Scholar 

  10. Idem., in "Nanostructured Materials: Science & Technology", edited by G.-M. Chow and N. I. Noskova (Kluwer Academic Publishers, Dordrecht, 1998) p.263.

    Google Scholar 

  11. D. S. Yan, Y. S. Zheng, L. Gao, C. F. Zhu, X. W. Wang, C. L. Bai, L. Xu and M. Q. Li, J. Mater. Sci. 33 (1998) 2719.

    Google Scholar 

  12. J. E. Carsley, A. Fisher, W. W. Milligan and E. C. Aifantis, Metall. Mater. Trans. A 29 (1998) 2261.

    Google Scholar 

  13. T. R. Malow and C. C. Koch, ibid. 29 (1998) 2285.

    Google Scholar 

  14. E. Finot, E. Lesniewska, J.-P. Goudonnet and J.-C. Mutin, Appl. Phys. Lett. 73 (1998) 2938.

    Google Scholar 

  15. R. A. Andrievski, G. V. Kalinnikov, N. P. Kobelev, JA. M. Soifer and D. V. Shtansky, Phys. Sol. State 39 (1997) 1661.

    Google Scholar 

  16. R. A. Andrievski, in “Surface-Controlled Nanoscale Materials for High-Added-Value Applications,” edited by K. E. Gonsalves, M.-I. Baraton, R. Singh, H. Hofmann, J. X. Chen and J. A. Akkara. Vol. 501 (MRS, Warrendale, 1998) p. 149.

    Google Scholar 

  17. L. Thomas, I. Jauberteau, J. L. Jauberteau, M. J. Cinelli, J. Aubreton and A. Catherinot, Appl. Phys. Lett. 68 (1996) 1634.

    Google Scholar 

  18. M. Shiwa, E. Weppelman, D. Munz, M. V. Swain and T. Kishi, J. Mater. Sci. 31 (1996) 5985.

    Google Scholar 

  19. K. J. Ma and A. Bloyce, Surf. Eng. 11 (1995) 71.

    Google Scholar 

  20. M. Oden, H. Ljungcrantz and L. Hultman, J. Mater. Res. 12 (1997) 2134.

    Google Scholar 

  21. J. R. Low, in “Fracture,” edited by B. L. Averbach, D. K. Felbeck, G. T. Hahn and D. A. Thomas (MIT and John Wiley & Sons, NY, 1959) p. 68.

    Google Scholar 

  22. A. N. Piliankevich, G. S. Oleinik and V. P. Smirnov, Powder Metallurgy (Kiev) No. 6 (1981) 69 (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrievski, R.A., Kalinnikov, G.V., Jauberteau, J. et al. Some peculiarities of fracture of nanocrystalline nitride and boride films. Journal of Materials Science 35, 2799–2806 (2000). https://doi.org/10.1023/A:1004790917616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004790917616

Keywords

Navigation