Skip to main content
Log in

Modelling nonlocal processes in semiconductor devices with exponential difference schemes

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this paper nonlocal quasi-hydrodynamic mathematical models describing non-equilibrium physical processes in semiconductor devices are considered. These processes cannot be adequately described with conventional drift-diffusion models. The primary numerical difficulty arises in the energy balance equation. Details of the discretisation for the continuity equations will be described along with a transformation of the energy balance equations to give computationally convenient forms. Effective exponential difference schemes are constructed and applied to modelling transport phenomena in semiconductors. Stability conditions, computational convergence and algorithmic realisations of the proposed schemes are discussed and numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ringhofer, Computational methods for semiclassical and quantum transport in semiconductor devices. Acta Num. 6 (1997) 485-521.

    Google Scholar 

  2. A.A. Samarskii and B. N. Chetverushkin, Microelectronics as a New Object of Investigation in Applied Mathematics. Comp. Math. and Cybern.: Vestnik Moscow Univ. 3 (1986) 9-20.

    Google Scholar 

  3. R.V.N. Melnik, Correction for nonstationarity and internal nonlinearity in the analysis of integrated-circuits thermal parameters. Radioelect. Comm. Syst. 34 (1991) 84-86.

    Google Scholar 

  4. P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor Equations.Wien: Springer-Verlag (1991) 248 pp.

    Google Scholar 

  5. R.V.N. Melnik and H. He, Modelling nonlocal processes in semiconductor devices with exponential difference schemes (Part 1: Relaxation time approximations). Department of Mathematics and Computing, University of Southern Queensland, Tech. Rep. SC-MC-9822 (1998) 29 pp. (available at http://www.sci.usq.edu.au/cgi-bin/wp/research/workingpapers)

  6. M. Shur, Physics of Semiconductor Devices. Englewood Cliffs: Prentice Hall (1990) 680 pp.

    Google Scholar 

  7. P.G. Scrobohaci and T.-W. Tang, Modeling of the Hot Electron Subpopulation and its Application to Impact Ionization in Submicron Silicon Devices. IEEE Trans. Electron Devices 41 (1994) 1197-1212.

    Google Scholar 

  8. K. Blotekjaer, Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron Devices ED-17 (1970) 38-47.

    Google Scholar 

  9. M. Rudan, F. Odeh and J. White, Numerical solution of the hydrodynamic model for a one-dimensional semiconductor device. COMPEL 6 (1987) 151-170.

    Google Scholar 

  10. C.L. Gardner, J.W. Jerome and D.J. Rose, Numerical Methods for the Hydrodynamic Device Model: Subsonic Flow. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8 (1989) 501-507.

    Google Scholar 

  11. Y. Zhang and M.El. Nokali, A Hydrodynamic transport model and its applications in semiconductor device simulation. Solid-State Electron. 36 (1993) 1689-1696.

    Google Scholar 

  12. R. K. Cook, Numerical Simulation of Hot-Carrier Transport in Silicon Bipolar Transistors. IEEE Trans. Electron Devices ED-30 (1983) 1103-1110.

    Google Scholar 

  13. L. J. Birukova et al., Simulation algorithms for computing processes in electron plasma of submicron semiconductor devices. Math. Model. 1 (1989) 11-22.

    Google Scholar 

  14. E.D. Lyumkis et al., Transient Semiconductor Device Simulation including energy balance equation. COMPEL 11 (1992) 311-325.

    Google Scholar 

  15. R.V.N. Melnik, Semi-Implicit Finite-Difference Schemes with Flow Correction for Quasi-Hydrodynamic Models of Semiconductor Devices. Eng. Simulation 12 (1995) 856-865.

    Google Scholar 

  16. V.A. Nikolaeva, V.I. Ryzhii and B.N. Cheverushkin, A numerical method for the simulation of two-dimensional semiconductor structures in the quasi-hydrodynamic approximation. Sov. Phys. Dokl. 33 (1988) 110-112.

    Google Scholar 

  17. Y. Apanovich, E. Lyumkis, B. S. Polsky et al., Steady-State and Transient Analysis of Submicron Devices Using Energy Balance and Simplified Hydrodynamic Models. IEEE Trans. Comp.-Aided Des. Integr. Circuits Syst. 13 (1994) 702-711.

    Google Scholar 

  18. S. M. Sze, Physics of Semiconductor Devices. New York: John Wiley & Sons (1981) 868 pp.

    Google Scholar 

  19. N. R. Aluru, K. H. Law, P. M. Pinsky et al., Space-Time Galerkin/Least-Squares Finite Element Formulation for the Hydrodynamic Device Equations. IEICE Trans. Electron. E77-C (1994) 227-235.

    Google Scholar 

  20. J. W. Slotboom, Computer aided two-dimensional analysis of bipolar transistor. IEEE Trans. Electron. Devices ED-20 (1973) 669-679.

    Google Scholar 

  21. A.H. Marshak and K.M. van Vliet, Electrical current in solids with position-dependent band structure. Solid-State Electron. 21 (1978) 417-427.

    Google Scholar 

  22. S.A. Mayorov, A.M. Melnikov and A.A. Rudenko, Modelling semiconductor microstructures in strong electric fields taking into account collision ionisation. Math. Model. 1 (1989) 23-32.

    Google Scholar 

  23. C.M. Snowden and D. Loret, Two-dimensional hot-electron models for short-gate-length GaAs MESFET'. IEEE Trans. Electron. Devices ED-34 (1987) 212-223.

    Google Scholar 

  24. R. Stratton, Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. B 126 (1962) 2002-2014.

    Google Scholar 

  25. T.-W. Tang, X. X. Ou and D. X. Navon, Prediction of the velocity overshoot by a nonlocal hot-carrier transport model. In: J. J. H. Miller (ed.), Proc. of the Fourth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits (NEMACOM IV). Dublin: Boole Press (1985) pp. 519-524.

    Google Scholar 

  26. C. Moglestue, Monte Carlo Simulation of Semiconductor Devices. New York: Chapman & Hall (1993) 326 pp.

    Google Scholar 

  27. P. A. Markowich, Diffusion Approximation of Nonlinear Electron Phonon Collision Mechanisms. Model. Math. Anal. Numer. (M2AN) 29 (1995) 857-869.

    Google Scholar 

  28. J. W. Jerome, Algorithmic aspects of the hydrodynamic and drift-diffusion models. In: R.E. Bank, R. Burlirsch and K. Merten (eds.), Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices. Basel: Birkhauser-Verlag (1990) pp. 217-236.

    Google Scholar 

  29. B. S. Polsky and J. S. Rimshans, Two-dimensional numerical simulation of bipolar semiconductor devices taking into account heavy doping effects and Fermi statistics. Solid-State Electron. 26 (1983) 275-279.

    Google Scholar 

  30. T.D. Bui, A.K. Oppenheim, and D.T. Pratt, Recent advances in methods for numerical solution of ODE initial value problems. J. Comp. Math. 11 (1984) 283-296.

    Google Scholar 

  31. E.S. Oran and J.P. Boris, Numerical Simulation of Reactive Flow. New York: Elsevier (1987) 601 pp.

    Google Scholar 

  32. A. A. Samarskii and E. S. Nikolaev, NumericalMethods for Grid Equations. Basel: Birkhauser Verlag (1989) 588 pp.

    Google Scholar 

  33. T.-W. Tang, Extension of the Scharfetter-Gummel algorithm to the energy balance equation. IEEE Trans. Electron. Devices ED-31 (1984) 1912-1914.

    Google Scholar 

  34. T.-W. Tang and M.-K. Ieong, Discretization of Flux Densities in Device Simulations Using Optimum Artificial Diffusivity. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14 (1995) 1309-1315.

    Google Scholar 

  35. B. S. Polsky and J. S. Rimshans, Half-Implicit Difference Scheme for Numerical Simulation of Transient Processes in Semiconductor Devices. Solid-State Electron. 29 (1986) 321-328.

    Google Scholar 

  36. D.J. Widiger, Two-dimensional transient simulation of an idealized high electron mobility transistor. IEEE Trans. Electron. Devices ED-32 (1985) 1092-1103.

    Google Scholar 

  37. M. S. Mock, A time-dependent numerical model of the insulated-gate FET. Solid-State Electron. 24 (1981) 959-966.

    Google Scholar 

  38. R. V. N. Melnik and H. He, Modelling nonlocal processes in semiconductor devices with exponential difference schemes (Part 2: Numerical methods and computational experiments). Department of Mathematics and Computing, University of Southern Queensland, Tech. Rep. SC-MC-9831 (1998) 26 pp. (available at http://www.sci.usq.edu.au/cgi-bin/wp/research/workingpapers).

  39. F. Brezzi, A.C.S. Capelo and L. Gastaldi, A singular perturbation analysis of reverse-biased semiconductor diodes. SIAM J. Math. Anal. 20 (1989) 372-387.

    Google Scholar 

  40. D. Kakati, C. Ramanan and V. Ramamurthy, Numerical analysis of electrophysical characteristics of semiconductor devices accounting for the heat transfer. In: J.J.H. Miller (ed.), Proc. of the Fourth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits. Dublin: Bool Press (1985) pp. 326-331.

    Google Scholar 

  41. C. Schmeiser, On strongly reverse biased semiconductor diodes. SIAM J. Appl. Math. 49 (1989) 1734-1748.

    Google Scholar 

  42. R. V. N. Melnik and K. N. Melnik, Modelling of Nonlocal Physical Effects in Semiconductor Plasma Using Quasi-Hydrodynamic Models. In: J. Noye, M. Teubner, A. Gill (eds.), Computational Techniques and Applications: CTAC97. Singapore: World Scientific (1998) pp. 441-448.

    Google Scholar 

  43. K. Singhal and J. Vlach, Computer Methods for Circuit Analysis and Design. New York: Van Nostrand Reinhold (1994) 712 pp.

    Google Scholar 

  44. W. T. Vetterling et al., Numerical Recipes Example Book (C). New York: Cambridge University Press (1994) 325 pp.

    Google Scholar 

  45. A. Greenbaum, Iterative Methods for Solving Linear Systems. Philadelphia: SIAM (1997) 220 pp.

    Google Scholar 

  46. W. B. Leigh, Devices for Optoelectronics. New York: Marcel Dekker (1996) 315 pp.

    Google Scholar 

  47. A. Tveito and R.Winther, The solution of nonstrictly hyperbolic conservation laws may be hard to compute. SIAM J. Sci. Comput. 16 (1995) 320-329.

    Google Scholar 

  48. P.-A. Raviart and L. Sainsaulieu, A nonconservative hyperbolic systems modelling spray dynamics (Part 1: Solution of the Riemann problem). Math. Models Methods Appl. Sci. 5 (1995) 297-333.

    Google Scholar 

  49. C. Jacobini et al., A review of some charge transport properties of silicon. Solid-State Electron. 20 (1977) 77-89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnik, R., He, H. Modelling nonlocal processes in semiconductor devices with exponential difference schemes. Journal of Engineering Mathematics 38, 233–263 (2000). https://doi.org/10.1023/A:1004783723500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004783723500

Navigation