Skip to main content
Log in

Structural evolution in polyolysed hybrid organic-inorganic alumina gels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

New material gels obtained by reaction of the aluminum sec-butoxide with propan-1,2-diol at room temperature without using a catalyst or adding water, have been pyrolyzed at different temperatures under argon and in air. The obtained products have been characterised by various methods (X-ray, IR and Raman spectroscopies, SEM and density measurements) to determine their structures. Corundum is formed at 1450°C when the material is heat-treated under argon, but this phase is obtained rapidly at temperatures above 1000°C for the xerogel pyrolysed in the air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Bonis, Electronic Packaging and Productionl 14(2) (1974) 46.

    Google Scholar 

  2. Schmidt and Sven Olaf, Forschungszent Juelich Ber., Juel (1990) 2394.

  3. J. J. Lannuti and D. E. Clark, Mater. Res. Soc. Symp. Proc. 32 (1984) 369.

    Google Scholar 

  4. Sumio Sakka, J. Non-cryst. Solids 121 (1990) 417.

    Google Scholar 

  5. M. Ledlein and V. Bohigliero, Ceram. Inf.23(270) (1988) 523.

    Google Scholar 

  6. B. E. Yoldas, J. Appl. Chem. Biotechnol. 23 (1973) 803.

    Google Scholar 

  7. Idem., Am. Ceram. Soc. Bul. 54 (1975) 289.

    Google Scholar 

  8. Idem., Ceramic Bulletin 54 (1975) 3.

    Google Scholar 

  9. Rudiger Nass and Helmut Schmidt, J. Non-cryst. Solids 121 (1990) 329.

    Google Scholar 

  10. H. Tayaa, A. Mosset and J. Galy, Eur. J. Solid State Inorg. Chem. 29 (1992) 13.

    Google Scholar 

  11. Hiroe Uchihashi, Noboru Tohge and Tsutomu Minami, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97 (1989) 396.

    Google Scholar 

  12. Florance Babonneau, Laure Coury and J. Livage, J. Non-cryst. Solids 121 (1990) 153.

    Google Scholar 

  13. S. Doeuff, M. Henry, C. Sanchez and J. Livage, ibid. 89 (1987) 84.

    Google Scholar 

  14. I. Gautier-Luneau, A. Mosset and J. Galy, Z. KRIST. 180 (1987) 83.

    Google Scholar 

  15. Fernand et al., J. Mater. Chem. 3(6) (1993) 627.

    Google Scholar 

  16. Ph. Colomban, E. Bruneton, J. L. Lagrange and E. Mouchon, J. of the European Ceram. Soc. 16 (1996) 301.

    Google Scholar 

  17. E. Mouchon and Ph. Colomban, J. of Materials Science. Letters 5 (1996) 323.

    Google Scholar 

  18. F. Touati, N. Gharbi and H. Zarrouk, J. of Solid State Chem. 119 (1995) 319.

    Google Scholar 

  19. Y. Kurokawa, T. Shirakawa, S. Saito and N. Yui, J. of Materials Science Letters 5 (1986) 1070.

    Google Scholar 

  20. S. M. Wolfrum, ibid. 31 (1987) 706.

    Google Scholar 

  21. V. Saraswati, ibid. 23 (1988) 3161.

    Google Scholar 

  22. X. Yang, A. C. Pierre and D. R. Uhlmann, J. Noncryst. Solids 100 (1988) 371.

    Google Scholar 

  23. PH. Colomban, J. of Materials Science. Letters 24 (1989) 3002.

    Google Scholar 

  24. Hiroe Uchhashi, Noboru Tohge and Tsutomu Minami, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97 (1989) 396.

    Google Scholar 

  25. Lee, Jung Won and Won, Chang Taejon, Taehan Kumsok Hakhoechi 28 (1990) 437.

    Google Scholar 

  26. H. Tayaa, A. Mosset and J. Galy, Eur. J. Solid State Inorg. Chem. 29 (1992) 27.

    Google Scholar 

  27. W Glaubitt, D. Sporn and R. John, J. of Sol-gel Science and Technology 2 (1994) 525.

    Google Scholar 

  28. J. N. Rouzaud, A. Oberlin and C. Beny-Bassez, Thin Solid Films 105 (1983) 75.

    Google Scholar 

  29. S. P. S. Porto and R. S. Krishnan, J. Chem. Phys. 47 (1967) 1009.

    Google Scholar 

  30. Ph. Colomban, Journal of Materials Science 24 (1989) 3002.

    Google Scholar 

  31. M. C. Stegnann, D. Vivien and C. Mazieres, J. Chim. Physique 71 (1974) 761.

    Google Scholar 

  32. T. Assith, A. Ayral et al., J. Mater. Sci. 23(9) (1988) 3326.

    Google Scholar 

  33. P. P. Mardilovitch, A. I. Trokhimen and M. V. Zaretskii, Zh. Prikl Spectrosk. 40 (1984) 409.

    Google Scholar 

  34. M. C. Stagmann, D. Vivien and C. Mazieres, Spectrochim. Acta 29A (1973) 1653.

    Google Scholar 

  35. Rudiger Nass and Helmut Schmidt, J. Non-Cryst. Solids 121 (1990) 329.

    Google Scholar 

  36. S. J. Wilson and M. H. Stacey, J. Coll. Interface Sci. 82 (1981) 507.

    Google Scholar 

  37. K. S. Mazdiyasni and L. M. Brown, J. Am. Ceram. Soc. (1982) 548.

  38. Ph. Colomban, Solid State Ionics 21 (1986) 97.

    Google Scholar 

  39. V. Vendange and Ph. Colomban, J. of Sol-gel Science and Technology 2 (1994) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touati, F., Gharbi, N. & Colomban, P. Structural evolution in polyolysed hybrid organic-inorganic alumina gels. Journal of Materials Science 35, 1565–1570 (2000). https://doi.org/10.1023/A:1004774122812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004774122812

Keywords

Navigation