Skip to main content
Log in

Microhardness studies of chain-extended PE: II. Creep behaviour and temperature dependence

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The variation of hardness with indentation time has been investigated for chain-extended polyethylene (PE), other PE samples crystallised under different conditions and paraffins. Hardness is shown to decrease with indentation time for all the samples investigated according to a power-law. Chain-extended PE, produced by high pressure crystallization or annealing, flows at the lowest rate under the indenter of all the PE samples considered. On the other hand, paraffins creep at the highest rate. Creep behaviour depends markedly on the crystal thickness of the material. The mechanical properties at long indentation times seem to be determined primarily by the deformation modes of the crystals. The temperature dependence of hardness and that of the creep behaviour has also been investigated. In chain-extended PE, the softening of the sample and the higher rate of creep with increasing temperature are discussed in terms of the thermal expansion of the unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. BaltÁ Calleja and S. Fakirov, Trends Polym. Sci. 5 (1997) 246.

    Google Scholar 

  2. T. Jawhai, J. C. Merino, J. C. Rodriguezcabello and J. M. Pastor, Polymer. 34 (1993) 1613.

    Google Scholar 

  3. S. Osawa and R. S. Porter, ibid. 37 (1996) 2095.

    Google Scholar 

  4. J. D. Kiely, R. Q. Hwang and J. E. Houston, Phys. Rev. Lett. 81 (1998) 4424.

    Google Scholar 

  5. E. H. Lee, G. R. Rao and L. K. Mansur, Trends Polym. Sci. 4 (1996) 229.

    Google Scholar 

  6. B. J. Briscoe and K. S. Sebastian, Proc. R. Soc. Lond. A 452 (1996) 439.

    Google Scholar 

  7. P. Eyerer and G. Lang, Kunststoffe. 62 (1972) 222.

    Google Scholar 

  8. F. J. BaltÁ Calleja, Trends Polym. Sci. 2 (1994) 419.

    Google Scholar 

  9. Idem. Adv. Polym. Sci. 66 (1985) 117.

    Google Scholar 

  10. F. J. BaltÁ Calleja, W. T. Mead and R. S. Porter, Polym. Engng. Sci. 20 (1980) 393.

    Google Scholar 

  11. F. J. BaltÁ Calleja, D. R. Rueda, R. S. Porter and W. T. Mead, J. Mater. Sci. 15 (1980) 765.

    Google Scholar 

  12. F. J. BaltÁ Calleja and D. C. Bassett, J. Polym. Sci.: Polym. Symp. 58 (1977) 157.

    Google Scholar 

  13. A. Flores, F. J. BaltÁ Calleja and D. C. Bassett, J. Polym. Sci., Polym. Phys. (part I of this series), 37 (1999).

  14. A. Flores, F. J. BaltÁ Calleja, G. E. Attenburrow and D. C. Bassett, Polymer. in press (part III of this series).

  15. D. C. Bassett, ibid. 17 (1976) 460.

    Google Scholar 

  16. D. C. Bassett in “Principles of Polymer Morphology” (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  17. F. Ania, H. G. Kilian and F. J. BaltÁ Calleja, J. Mater. Sci. Lett. 5 (1986) 1183.

    Google Scholar 

  18. F. J. BaltÁ Calleja, C. Santa Cruz, A. GonzÁlez Arche and E. LÓPEZ CABARCOS, J. Mater. Sci. 27 (1992) 2124.

    Google Scholar 

  19. G. T. Davis, R. K. Eby and J. P. Colson, J. Appl. Phys. 41 (1970) 4316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltá Calleja, F.J., Flores, A., Ania, F. et al. Microhardness studies of chain-extended PE: II. Creep behaviour and temperature dependence. Journal of Materials Science 35, 1315–1319 (2000). https://doi.org/10.1023/A:1004757402398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004757402398

Keywords

Navigation