Skip to main content
Log in

Microstructure, electrical properties, and degradation behavior of praseodymium oxides-based zinc oxide varistors doped with Y2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure, electrical properties, and degradation behavior of Pr-based zinc oxide varistors, which are composed of Zn-Pr-Co-Cr-Y oxides were investigated according to Y2O3 additive content in the range 0.5–4.0 mol%. The majority of the Sadded Y2O3 were segregated at the multiple ZnO grain junctions and grain boundaries. The average grain size was markedly decreased in the range 27.3–8.6 μm with increasing Y2O3 additive content. Y2O3 acted as an inhibitor of grain growth. Additions of Y2O3 increased the varistor voltage in the range 36.90–686.58 V/mm, increased the nonlinear exponent in the range 3.75–87.42, decreased the leakage current in the range 115.48–0.047μA, increased the barrier height in the range 1.06–2.16 eV, and decreased the donor concentration in the rang 1.87 × 1018–0.19 × 1018 cm−3. Y2O3 acted as an acceptor, as a result of the decrease of donor concentration. All Pr-based ZnO varistors doped with Y2O3 exhibited very predominant degradation characteristics, which show a nearly symmetric I-V after the stress. In particular, since 4.0 mol% Y2O3-added ZnO varistor has not only very excellent non-ohmicity, but also very stable degradation behavior, it is estimated to be sufficiently used to various application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Matsuoka, Jpn. J. Appl. Phys. 10 (1971) 736.

    Google Scholar 

  2. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull. 65 (1986) 639.

    Google Scholar 

  3. T. K. Gupta, J. Am. Ceram. Soc. 73 (1990) 1817.

    Google Scholar 

  4. L. K. J. Vanadamme and J. C. Brugman, J. Appl. Phys. 51 (1980) 4240.

    Google Scholar 

  5. S.-N. Bai and T.-Y. Tseng, Jpn. J. Appl. Phys. 31 (1992) 81.

    Google Scholar 

  6. L. M. Levinson and H. R. Philipp, J. Appl. Phys. 46 (1975) 1332.

    Google Scholar 

  7. M. Fix and J. Soln, Appl. Phys. Lett. 26 (1075) 519.

  8. P. R. Emtage, J. Appl. Phys. 48 (1977) 4372.

    Google Scholar 

  9. K. Eda, ibid. 49 (1978) 2964.

    Google Scholar 

  10. G. D. Mahan, L. M. Levinson and H. R. Philipp, ibid. 50 (1979) 2799.

    Google Scholar 

  11. J. Wong, ibid. 46 (1975) 1653.

    Google Scholar 

  12. M. Inada, Jpn. J. Appl. Phys. 17 (1978) 1.

    Google Scholar 

  13. Idem., ibid. 17 (1978) 673.

    Google Scholar 

  14. C.-Y. Shen, Y.-C. Chen and L. Wu, ibid. 32 (1993) 2043.

    Google Scholar 

  15. J. Fan and R. Freer, J. Appl. Phys. 77 (1995) 4795.

    Google Scholar 

  16. T. R. Kutty and S. Ezhilvalavan, Jpn. J. Appl. Phys. 34 (1995) 6125.

    Google Scholar 

  17. S. A. Pianaro, E. C. Pereira, L. O. S. Bulhoes, E. Longe and J. A. Varela, J. Mat. Sci. 30 (1995) 133.

    Google Scholar 

  18. T. K. Gupta and W. G. Carlson, ibid. 20 (1985) 3487.

    Google Scholar 

  19. Y.-S. Lee and T.-Y. Tseng, J. Am. Ceram. Soc. 75 (1992) 1636.

    Google Scholar 

  20. J. Fan and R. Freer, J. Mat. Sci. 28 (1993) 1391.

    Google Scholar 

  21. C.-S. Chen, C.-T. Kuo and I.-N. Lin, J. Mat. Res. 13 (1998) 1560.

    Google Scholar 

  22. A. B. Alles and V. L. Burdick, J. Appl. Phys. 70 (1991) 6883.

    Google Scholar 

  23. A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Am. Ceram. Soc. 76 (1993) 2098.

    Google Scholar 

  24. Y.-S. Lee, K.-S. Liao and T.-Y. Tseng, ibid. 79 (1996) 2379.

    Google Scholar 

  25. M. Mukae, K. Tsuda and I. Nagasawa, J. Appl. Pshys. 50 (1979) 4475.

    Google Scholar 

  26. S. M. Sze, in “Physics of Semiconductor Devices” (John Wiley and Sons, New York, 1981) p. 402.

    Google Scholar 

  27. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc. 97–12 (1972) 109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahm, CW., Park, CH. Microstructure, electrical properties, and degradation behavior of praseodymium oxides-based zinc oxide varistors doped with Y2O3. Journal of Materials Science 35, 3037–3042 (2000). https://doi.org/10.1023/A:1004749214640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004749214640

Keywords

Navigation