Skip to main content
Log in

Structure and properties of rapidly solidified Al-Zr-Ti alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Al-Zr-Ti system has recently been suggested as a candidate for Al-based materials capable of retaining a high strength during a long term exposure to high temperatures up to 700 K. The Al-1.25 at.% (Zr+Ti) alloys with a variable Zr : Ti ratio were rapidly solidified using the melt spinning method. The solidification structure was found inhomogeneous along the direction perpendicular to the ribbon plane and dependent on the Zr : Ti ratio. The microhardness values were correlated with the structure and chemical composition. The presence of second phase particles in the as melt-spun ribbons was proved by SAXS experiments. X-ray and electron diffraction experiments enabled to identify most of particles as the metastable Al3(ZrxTi1−x) phase with the cubic L12 structure. Especially in the Zr-rich alloys, these particles precipitated preferentially in a fan-shaped morphology. The grains of the Ti-rich alloys were nearly free of these particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Jones, Aluminium 54 (1978) 274.

    Google Scholar 

  2. S. Srinivasan, P. B. Desch and R. B. Schwartz, Scripta Metall. 25 (1991) 2513.

    Google Scholar 

  3. E. Nes, Acta Metall. 20 (1972) 499.

    Google Scholar 

  4. L. F. Mondolfo, “Aluminium Alloys: Structure and Properties” (Butterworth, London, 1976).

    Google Scholar 

  5. S. K. Das and L. A. Davis, Mater. Sci. Eng. 98 (1988) 1.

    Google Scholar 

  6. H. Jones, “Rapid Solidification of Metals and Alloys” (Inst. of Metallurgists, London, 1982).

    Google Scholar 

  7. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35.

    Google Scholar 

  8. C. Wagner, Z. Elektrochem. 65 (1961) 581.

    Google Scholar 

  9. M. Zedalis and M. E. Fine, Scripta Metall. 17 (1983) 1247.

    Google Scholar 

  10. Idem., Met. Trans. A 17 (1986) 2187.

    Google Scholar 

  11. Y. C. Chen, M. E. Fine, J. R. Weertman and R. E. Lewis, Scripta Metall. 21 (1987) 1003.

    Google Scholar 

  12. R. E. Lewis, D. D. Crooks, Y. C. Chen, M. E. Fine and J. R. Weertman, in Proceedings of the 3rd International Conference on Creep and Fracture of Engineering Materials, Swansea, 1987, edited by B. Wilshire and R. W. Evans (The Inst. of Metals, London, 1987) p. 331.

    Google Scholar 

  13. V. R. Parameswaran, J. R. Weertman and M. E. Fine, Scripta Metall. 23 (1989) 147.

    Google Scholar 

  14. O. Kratky, Prog. Biophys. 13 (1963) 105.

    Google Scholar 

  15. W. Ruland, J. Appl. Cryst. 4 (1971) 70.

    Google Scholar 

  16. Y. C. Chen, M. E. Fine and J. R. Weertman, Acta Metall. Mater. 38 (1990) 771.

    Google Scholar 

  17. J. E. Hetch (ed.), “Aluminum: Properties and Physical metallurgy” (Metals Park, OH, ASM, 1974) p. 29.

    Google Scholar 

  18. T. Ohashi and R. Ichikawa, Met. Trans. 3 (1972) 2300.

    Google Scholar 

  19. E. Nes and H. Billdal, Acta Metall. 25 (1977) 1039.

    Google Scholar 

  20. T. Ohashi and R. Ichikawa, Z. Metallkde 61 (1973) 517.

    Google Scholar 

  21. E. Nes, H. Billdal, Acta Metall. 25 (1977) 1031.

    Google Scholar 

  22. S. Hori, H. Tai and Y. Narita, in “Rapidly Quenched Metals,” edited by S. Steeb and H. Warlimont (Elsevier Sci. Publ., 1985) p. 911.

  23. H. Jones, Mater. Sci. Eng. 5 (1969/70) 1.

    Google Scholar 

  24. S. K. Pandey, D. K. Gangopadhyay and C. Suryanarayana, Z. Metallkde 77 (1986) 12.

    Google Scholar 

  25. E. Sahin and H. Jones, in “Rapidly Quenched Metals II, edited by B. Cantor (The Metals Soc., London, 1978) p. 138.

    Google Scholar 

  26. A. Majumdar and B. C. Muddle, Mater. Sci. Eng. A 169 (1993) 135.

    Google Scholar 

  27. M. G. Chu, ibid. A 179/180 (1994) 669.

    Google Scholar 

  28. L. M. Burov and A. A. Yakunin, Russ. J. Phys. Chem. 42 (1968) 540.

    Google Scholar 

  29. H. Octor and S. Naka, Phil. Mag. Letters 59 (1989) 229.

    Google Scholar 

  30. N. Ryum, Acta Metall. 20 (1969) 499.

    Google Scholar 

  31. Z. A. Chaudhury and C. Suryanarayana, Metallography 17 (1984) 231.

    Google Scholar 

  32. H. M. Lee, Scripta Metall. Mater. 24 (1990) 2443.

    Google Scholar 

  33. W.-W. Park and T.-H. Kim,Scripta Metall. 22 (1988) 1709.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Málek, P., JaneČek, M., Smola, B. et al. Structure and properties of rapidly solidified Al-Zr-Ti alloys. Journal of Materials Science 35, 2625–2633 (2000). https://doi.org/10.1023/A:1004739718504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004739718504

Keywords

Navigation