Skip to main content
Log in

Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various processes of coprecipitation or crystallization of inorganicsalts of barium and titanium from homogeneous solutions were studiedin this work. In particular, barium hydroxide and barium chloridesalt as well as titanium tetrachloride were used as the startingmaterials for dielectric-tuning homogeneous precipitation in mixedsolvents of isopropanol and water. Hydroxypropylcellulose was used asa steric dispersant. Evaluations of size, shape, and composition ofsynthesized particles were made using scanning electron microscopy,high-temperature X-ray diffractometry, and differential thermalanalysis. Results show that salt concentration, pH, and reaction timeare important in determining the morphology and composition of thefinal powder. The titania particles from dielectric-tuningprecipitation are perfect microspheres with narrow size distribution(near monodispersed), while the particles from barium salts areflake-like, irregular in shape and size. Instead of particlescontaining uniform compositions of barium and titanium compounds,dielectric-tuning coprecipitation yielded powders of two separatedphases, i.e., monodispersed titania microspheres (∼1 μm) coated onbarium chloride salt flakes. Titanium-rich barium titanate wasobtained after calcination of coprecipitated powders. However,preliminary results show that the titania particles obtained bydielectric-tuning precipitation can be hydrothermally converted toBaTiO3 particles that are fully crystallized after calcination above950°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nishizawa and M. Katsube, J. Solid State Chem. 131 (1997) 43.

    Google Scholar 

  2. T. Fukui, C. Sakurai and M. Okuyama, J. Mater. Sci. 32 (1997) 189.

    Google Scholar 

  3. J. C. Niepce and G. Thomas, Solid State Ionics 43 (1990) 69.

    Google Scholar 

  4. P. P. Phule and S. H. Risbud, J. Mater. Sci. 25 (1990) 1169.

    Google Scholar 

  5. J. O. Eckert, Jr., C. C. Hung-houston, B. L. Gersten, M. M. Lencka and R. E. Riman, J. Amer. Ceram. Soc. 79 (1996) 2929.

    Google Scholar 

  6. H. Park, D. Kim and C. Kim, ibid. 80 (1997) 743.

    Google Scholar 

  7. Z. H. Park, H. S. Shin, B. K. Lee and S. H. Cho, ibid. 80 (1997) 1599.

    Google Scholar 

  8. A. V. Ragulya, O. O. Vasylkiv and V. V. Skorokhod, Powder Metallurgy and Metal Ceramics 36 (1997) 170.

    Google Scholar 

  9. S. W. Kim, M. H. Lee, T. Y. Noh and C. Lee, J. Mater. Sci. 31 (1996) 3643.

    Google Scholar 

  10. M. Arima, M. Kakihana, Y. Nakamura, M. Yashima and M. Yoshimura, J. Amer. Ceram. Soc. 79 (1996) 2847.

    Google Scholar 

  11. C. Proust, C. Miot and E. Husson, J. Europ. Ceram. Soc. 15 (1995) 631.

    Google Scholar 

  12. D. Hennings and S. Schreinemacher, ibid. 9 (1992) 41.

    Google Scholar 

  13. D. Hennings, G. Rosenstein and H. Schreinemacher, ibid. 8 (1991) 107.

    Google Scholar 

  14. R. N. Viswanath and S. Ramasamy, NanoStruct. Mater. 8 (1997) 155.

    Google Scholar 

  15. H. Shimooka and M. Kuwabara, J. Amer. Ceram. Soc. 78 (1995) 2849.

    Google Scholar 

  16. S. Takahashi, H. Ohmura, K. Miki, H. Shimooka and M. Kuwabara, J. Ceram. Soc. Jap., Int. Edition 102 (1994) 1182.

    Google Scholar 

  17. K. S. Mazdiyasni, R. T. Dolloff and J. S. Smith, J. Amer. Ceram. Soc. 52 (1969) 523.

    Google Scholar 

  18. M. I. Yanovskaya, N. M. Kotova, I. E. Obvintseva, E. P. Turevskaya, N. YA. Turova, K. A. Vorotilov, L. I. Solov'yova and E. P. Kovsman, Mat. Res. Soc. Symp. Proc. 346 (1994) 15.

    Google Scholar 

  19. P. P. Phule, S. Raghavan and S. H. Risbud, J. Amer. Ceram. Soc. 70 (1987) C108.

    Google Scholar 

  20. K. Kiss, J. Magder, M. S. Vukasovich and R. J. Lockhart, ibid. 49 (1966) 295.

    Google Scholar 

  21. S. S. Flaschen, ibid. 77 (1955) 6194.

    Google Scholar 

  22. M. Ikeda, S.-K. Lee, K. Shinozaki and N. Mizutani, J. Ceram. Soc. Jap., Int. Edition 100 (1992) 674.

    Google Scholar 

  23. A. I. Yanovsky, M. I. Yanovskaya, V. K. Limar, V. G. Kessler, N. YA. Turova and Y. T. Struchkov, J. Chem. Soc., Chem. Commun. (1991) 1605.

  24. P. P. Phule and S. H. Risbud, Mater. Sci. Eng. B3 (1989) 241.

    Google Scholar 

  25. P. Gherardi and E. Matijevič, Colloids Surf. 32 (1988) 257.

    Google Scholar 

  26. E. Shi, C. Xia, W. Zhong, B. Wang and C. Feng, J. Amer. Ceram. Soc. 80 (1997) 1567.

    Google Scholar 

  27. S. Wada, T. Suzuki and T. Noma, J. Ceram. Soc. Jap. 104 (1996) 383.

    Google Scholar 

  28. M. Wu, R. Xu, S. Feng, L. Li, D. Chen and Y. Luo, J. Mater. Sci. 31 (1996) 6201.

    Google Scholar 

  29. C.-T. Xia, E.-W. Shi, W.-Z. Zhong and J.-K. Guo, J. Europ. Ceram. Soc. 15 (1995) 1171.

    Google Scholar 

  30. P. K. Dutta, R. Asiaie, S. A. Akbar and W. Zhu, Chem. Mater. 6 (1994) 1542.

    Google Scholar 

  31. P. K. Dutta and J. R. Gregg, ibid. 4 (1992) 843.

    Google Scholar 

  32. J. A. Kerchner, J. Moon, R. E. Chodelka, A. A. Morrone and J. H. Adair, ACS Symp. Ser. 681 (1998) 106.

    Google Scholar 

  33. F. Dogan, S. O'rourke, M.-X. Qian and M. Sarikaya, Soc. Symp. Proc. 457 (1997) 69.

    Google Scholar 

  34. E. B. Slamovich and I. A. Aksay, J. Amer. Ceram. Soc. 79 (1996) 239.

    Google Scholar 

  35. F. Dogan and M. Sarikaya, Mat. Res. Soc. Proc. 403 (1996) 95.

    Google Scholar 

  36. S. Wada, T. Suzuki and T. Noma, J. Ceram. Soc. Jap., Int. Edition. 103 (1995) 1207.

    Google Scholar 

  37. R. Vivekanandan and T. R. N. Kutty,Powder Technol. 57 (1989) 151.

    Google Scholar 

  38. W. Hertl, J. Amer. Ceram. Soc. 71 (1988) 879.

    Google Scholar 

  39. CH. Beck, W. Hartl and R. Hempelmann, J. Mater. Res. 13 (1998) 3174.

    Google Scholar 

  40. H. Herrig and R. Hempelmann, Mater. Lett. 27 (1996) 287.

    Google Scholar 

  41. D. Sporn, J. Gromann, A. Kaiser, R. Jahn and A. Berger, NanoStruct. Mater. 6 (1995) 329.

    Google Scholar 

  42. L. M. Gan, L. H. Zhang, H. S. O. Chan, C. H. Chew and B. H. Loo, J. Mater. Sci. 31 (1996) 1071.

    Google Scholar 

  43. P. K. Dutta, P. K. Gallagher and J. Twu, Chem. Mater. 4 (1992) 847.

    Google Scholar 

  44. The Aldrich Chemical Company, Inc., “Catalog Handbook of Fine Chemicals,” (1998–1999) pp. 139, 1613.

  45. M. Z.-C. Hu, E. A. Payzant and C. H. Byers, J. Colloid Inter. Sci., 222 (2000) 20.

    Google Scholar 

  46. H. Park, Y. Moon, D. Kim and C. Kim, J. Amer. Ceram. Soc. 79 (1996) 2727.

    Google Scholar 

  47. M. Z.-C. Hu, R. D. Hunt, E. A. Payzant and C. R. Hubbard, ibid. 82 (1999) 2313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M.ZC., Miller, G.A., Payzant, E.A. et al. Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles. Journal of Materials Science 35, 2927–2936 (2000). https://doi.org/10.1023/A:1004718508280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004718508280

Keywords

Navigation