Skip to main content
Log in

A comparison of indentations of different size and geometry in single-quasicrystalline AIPdMn

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The study compares impressions into one and the same single-quasicrystalline Al70Pd20Mn10 sample (surface of fivefold symmetry) that were performed by spherical and pointed indenters (Vickers- and corner-of-a-cube-geometry) and investigated using Atomic Force Microscopy (AFM). The Meyer hardness number was found to vary with indentation size in a manner similar to materials that work harden, though this behavior must have a different physical origin: for spherical indentations the hardness number slightly increases with increasing load (Meyer hardness evolution), whereas for pyramid-shaped indenters a considerable hardness increase in case of decreasing load can be stated. Spherical indentations show little piling-up only in contrast to pointed indentations where huge elevations surrounding the indent developed. Different degrees of lateral cracking can account for this observation. In case of Vickers indentations the material breaks into segments which display mutual shearing. Distinct differences can also be noticed with respect to the volume balance between the apparent piled-up volume around the impression and the volume of the displaced material. This balance proves positive for pyramidal and negative for spherical impressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53 (1984) 1951.

    Google Scholar 

  2. M. Wollgarten and K. Urban, in “Lectures on Quasicrystals,” edited by F. Hippert and D. Gratias, (Les Editions des Physiques, Les Ulis, 1994) chap. 12 p. 535.

    Google Scholar 

  3. S. S. Kang, J. M. Dubois and J. Von Stebut, J. Mater. Re. 8 (1993) 2471.

    Google Scholar 

  4. J. Von Stebut, C. Strobel and J. M. Dubois in “Proceedings 5th Int. Conf. on Quasicrystals, Avignon, 1995,” edited by C. Janot and R. Mosseri (World Scientific, Singapore, 1995) p. 704.

    Google Scholar 

  5. M. Feuerbacher, R. Rosenfeld, B. Baufeld, M. Bartsch, U. Messerschmidt, M. Wollgarten and K. Urban, in “Proceedings 5th Int. Conf. on Quasicrystals, Avignon, 1995,” edited by C. Janot and R. Mosseri (World Scientific, Singapore, 1995) p. 714.

    Google Scholar 

  6. M. Wollgarten and H. Saka, in “New Horizons in Quasicrystals: Research and Applications” (World Scientific, Singapore, 1997) p. 320.

    Google Scholar 

  7. D. Tabor, Phil. Mag. A74 (1996) 1207; D. TABOR, “The Hardness of Solids” (Oxford University Press, Oxford, UK, 1951).

    Google Scholar 

  8. M. Feuerbacher, PhD thesis, Forschungszentrum Jülich, Rheinisch-Westfälische Technische Hochschule, Aachen, 1996.

  9. J. E. Shield, M. J. Kramer and R. W. McCALLUM, J. Mater. Res. 9 (1994) 343.

    Google Scholar 

  10. L. Bresson, in “Lectures on Quasicrystals”, edited by F. Hippert and D. Gratias (Les Editions des Physiques, Les Ulis, chap. 13, 1994) p. 549.

    Google Scholar 

  11. RH. Krawietz, personal communication, 1997.

  12. B. Bhushan, A. V. Kulkarni, W. Bonin and J. T. Wyrobek, Phil. Mag. A74 (1996) 1117.

    Google Scholar 

  13. J. S. Field and M. V. Swain, J. Mater. Res. 8 (1993) 297.

    Google Scholar 

  14. M. V. Swain Idem., ibid. 10 (1995) 101.

    Google Scholar 

  15. H. Hertz, J. reine u. angew. Mathematik 92 (1882) 156.

    Google Scholar 

  16. J. E. Field (eds.), “The Properties of Diamond” (Academic Press, London, 1979).

    Google Scholar 

  17. K. Tanaka, Y. Mitarai and M. Koiwa, Phil. Mag. A 73 (1996) 1715.

    Google Scholar 

  18. E. Meyer, Z. Verein. Deutscher Ing. 52 (1908) 645.

    Google Scholar 

  19. U. DÑrig and A. Stalder, in “Micro-/Nanotribology and its Applications,” edited by B. Bhushan (Kluwer Academic Publishers, Dordrecht, 1997) NATO Series E, Vol. 330, pp. 61–99.

    Google Scholar 

  20. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7 (1992) 1564.

    Google Scholar 

  21. TH. Chudoba, PhD thesis, Forschungszentrum Rossendorf, TU Dresden, 1996.

  22. Y. Yokoyama, A. Inoue and T. Masumoto, Mater. Trans. JIM 34 (1993) 135.

    Google Scholar 

  23. R. W. Siegel and G. E. Fougere, Nano Structured Materials 6 (1995) 205.

    Google Scholar 

  24. M. V. Swain and J. S. Field, Phil. Mag. A 74 (1996) 1085.

    Google Scholar 

  25. G. M. Pharr, W. C. Oliver and D. S. Harding, J. Mater. Res. 6 (1991) 1129.

    Google Scholar 

  26. A. Pajares, F. Guiberteau, R. W. Steinbrech and A. Dominguez-rodriguez,Acta metall. Mater. 43 (1995) 3649.

    Google Scholar 

  27. B. Wolf, C. Deus and P. Paufler, Surface and Interface Analysis 25 (1997) 561.

    Google Scholar 

  28. C. Deus, B. Wolf and P. Paufler, Phil. Mag. A75 (1997) 1171.

    Google Scholar 

  29. B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  30. B. R. Lawn, M. V. Swain and K. Philips, ibid. 10 (1975) L1236

    Google Scholar 

  31. B. Wolf and P. Paufler, Surf. Interface Anal. 27 (1999) 592.

    Google Scholar 

  32. J. Stadler, R. Mikulla and H.-R. Trebin, Verhandl. DPG (VI) 32 (1997) 830 M6.1.

    Google Scholar 

  33. PH. Ebert, M. Feuerbacher, N. Tamura, M. Wollgarten and K. Urban, Phys. Rev. Lett. 77 (1996) 3827; Verhandl. DPG (VI) 32 (1997) 830 M6.2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, B., Swain, M., Kempf, M. et al. A comparison of indentations of different size and geometry in single-quasicrystalline AIPdMn. Journal of Materials Science 35, 723–734 (2000). https://doi.org/10.1023/A:1004713502703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004713502703

Keywords

Navigation