Skip to main content
Log in

Soil pH changes after application of plant shoot materials of faba bean and wheat

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In a soil incubation experiment, the effect of green material of faba bean (Vicia faba L.) and wheat (Triticum aestivum L.) on soil pH was compared. In comparison with control, the application of both plant materials caused a significant soil pH increase. The liming effect was higher for faba bean than for wheat. This difference in liming effect between the two plant species was closely related to their alkalinity concentration. In total, 82% of the alkalinity in faba bean and 96% of that in wheat were water-soluble. To elucidate possible factors responsible for the difference in liming effect, plant matter of wheat and faba bean was fractionated and organic anions were identified. The total concentration of identified organic anions was comparable for both plant species. For wheat, over 80% of the alkalinity occurred in the form of simple organic anions with malate as the dominant one. In faba bean, only 40% of the alkalinity was identified as simple organic anions. About 40% of the alkalinity were related to macromolecules, possibly pectinates. Our data suggest that macromolecules such as pectinates may be mainly responsible for the greater liming effect of faba bean, as compared to wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barekzai A and Mengel K 1993 Effect of microbial decomposition of mature leaves on soil pH. Z. Pflanzenernähr. Bodenk. 156, 93–94.

    CAS  Google Scholar 

  • Bessho T and Bell L C 1992 Soil solid and solution phase changes and mung bean response during amelioration of aluminium toxicity with organic matter. Plant Soil 140, 183–196.

    CAS  Google Scholar 

  • Bosch M and Amberger A 1983 Einfluß langjähriger Düngung mit verschiedenen N-Formen auf pH-Wert, Humusfraktionen, biologische Aktivität und Stickstoffdynamik einer Acker-Braunerde. Z. Pflanzenernähr. Bodenk. 146, 714–724.

    CAS  Google Scholar 

  • Hoff J E and Castro M D 1969 Chemical composition of potato cell wall. Agric. Food Chem. 17, 1328–1331.

    Article  CAS  Google Scholar 

  • Hoffland E, Van den Boogaard R, Nelemans J and Findenegg G 1992 Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol. 122, 675–680.

    CAS  Google Scholar 

  • Hue N V 1992 Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage sludge. Commun. Soil Sci. Plant Anal. 23, 241–264.

    Google Scholar 

  • Hue N V and Amien I 1989 Aluminum detoxification with green manures. Commun. Soil Sci. Plant Anal. 20, 1499–1511.

    Article  CAS  Google Scholar 

  • Jarvis M C, Forsyth W and Duncan H J 1988 A survey of the pectin content of nonlignified monocot cell walls. Plant Physiol. 88, 309–314.

    PubMed  CAS  Google Scholar 

  • Jarvis S C and Robson A D 1983 The effect of nitrogen nutrition of plants on the development of acidity in Western Australian soils. I. Effects with subterranean clover grown under leaching conditions. Aust. J. Agric. Res. 34, 341–353.

    Article  CAS  Google Scholar 

  • Jungk A 1968 Die Alkalinität der Pflanzenasche als Maß für den Kationenüberschuß in der Pflanze. Z. Pflanzenernähr. Bodenk. 120, 99–105.

    CAS  Google Scholar 

  • Keller V P and Deuel H 1957 Kationenaustauschkapazität and Pektingehalt von Pflanzenwurzeln. Z. Pflanzenernähr. Bodenk. 79, 119–131.

    CAS  Google Scholar 

  • Kirkby E A and Mengel K 1967 Ionic balance in different tissues of tomato plant in relation to nitrate, urea or ammonium nutrition. Plant Physiol. 42, 6–14.

    PubMed  CAS  Google Scholar 

  • Kretzschmar R M, Hafner H, Bation A and Marschner H 1991 Long-and short-term effects of crop residues on aluminum toxicity, phosphorus availability and growth of pearl millet in an acid sandy soil. Plant Soil 136, 215–223.

    Article  CAS  Google Scholar 

  • Loewus F A 1952 Improvement in anthron method for determination of carbohydrates. Anal. Chem. 24, 219.

    Article  CAS  Google Scholar 

  • Muralikrishna G and Taranathan R N 1994 Characterization of pectin polysaccharides from pulse husks. Food Chem. 50, 87–89.

    Article  CAS  Google Scholar 

  • Marschner H 1995 Mineral Nutrition of Higher Plants. Academic Press, London. pp. 289

    Google Scholar 

  • Mengel K 1994 Symbiotic dinitrogen fixation - its dependence on plant nutrition and its ecophysiological impact. Z. Pflanzenernähr. Bodenk. 157, 233–241.

    CAS  Google Scholar 

  • Neumann G and Römheld V 1999 Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211, 121–130.

    Article  CAS  Google Scholar 

  • Northcote D H 1972 Chemistry of the plant cell wall. Ann. Rev. Plant Physiol. 23, 113–132.

    Article  CAS  Google Scholar 

  • Pikul J L and Allmaras R R 1986 Physical and chemical properties of a Haploxeroll after fifty years of residue management. Soil Sci. Soc. Am. J. 50, 214–219.

    Article  Google Scholar 

  • Pocknee S and Sumner M E 1997 Cation and nitrogen contents of organic matter determine its soil liming potential. Soil Sci. Soc. Am. J. 61, 86–92.

    Article  CAS  Google Scholar 

  • Rosen H 1957 A modified ninhydrin colorimetric analysis for amino acids. Achiv. Biochem. Biophys. 67, 10–15.

    Article  CAS  Google Scholar 

  • Schubert S and Yan F 1997 Nitrate and ammonium nutrition of plants: effects on acid/base balance and adaptation of root cellplasmalemma H+ ATPase. Z. Pflanzenernähr. Bodenk. 160, 275–281.

    CAS  Google Scholar 

  • Shibuya N and Iwasaki T 1978 Polysaccharides and glycoproteins in the rice endosperm cell wall. Agric. Biol. Chem. 42, 2259–2266.

    CAS  Google Scholar 

  • Smith I D 1991 Evaluation of the Foss-Heraeus Macro N for the determination of nitrogen in a wide range of foodstuffs, ingredients and biological materials and comparison with the Kjelfoss. Anal. Proc. 28, 320–324.

    Article  CAS  Google Scholar 

  • Thakur B R, Singh R K and Handa A K 1997 Chemistry and uses of pectin - a review. Critical Rev. Food Sci. Nutri. 37, 47–73.

    Article  CAS  Google Scholar 

  • Wada S and Ray P M 1978 Matrix polysaccharides of oat coleoptile cell walls. Phytochemistry 17, 923–931.

    Article  CAS  Google Scholar 

  • Yan F and Mengel K 1992a Determination of lime requirement by electro-ultrafiltration (EUF). Eur. J. Agron. 1, 71–77.

    Google Scholar 

  • Yan F, Schubert S and Mengel K 1992b Effect of low root medium pH on net proton release, root respiration and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol. 99, 415–421.

    PubMed  CAS  Google Scholar 

  • Yan F, Schubert S and Mengel K 1996a Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28, 617–624.

    Article  CAS  Google Scholar 

  • Yan F, Schubert S and Mengel K 1996b Soil pH changes during legume growth and application of plant material. Biol. Fertil. Soils 23, 236–242.

    CAS  Google Scholar 

  • Yang X, Römheld V and Marschner H 1994 Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant Soil 164, 1–7.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, F., Schubert, S. Soil pH changes after application of plant shoot materials of faba bean and wheat. Plant and Soil 220, 279–287 (2000). https://doi.org/10.1023/A:1004712518406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004712518406

Navigation